Cargando…
A unified deep-learning network to accurately segment insulin granules of different animal models imaged under different electron microscopy methodologies
Autores principales: | Zhang, Xiaoya, Peng, Xiaohong, Han, Chengsheng, Zhu, Wenzhen, Wei, Lisi, Zhang, Yulin, Wang, Yi, Zhang, Xiuqin, Tang, Hao, Zhang, Jianshe, Xu, Xiaojun, Feng, Fengping, Xue, Yanhong, Yao, Erlin, Tan, Guangming, Xu, Tao, Chen, Liangyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Higher Education Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418072/ https://www.ncbi.nlm.nih.gov/pubmed/30306458 http://dx.doi.org/10.1007/s13238-018-0575-y |
Ejemplares similares
-
Glucagon Potentiates Insulin Secretion Via β-Cell GCGR at Physiological Concentrations of Glucose
por: Zhang, Yulin, et al.
Publicado: (2021) -
VAMP4 regulates insulin levels by targeting secretory granules to lysosomes
por: Li, Min, et al.
Publicado: (2022) -
Unifying concepts in methanogenic, aerobic, and anammox sludge granulation
por: Mills, Simon, et al.
Publicado: (2023) -
Unifying cancer and normal RNA sequencing data from different sources
por: Wang, Qingguo, et al.
Publicado: (2018) -
Study on the Properties and Process Parameters of Different Clays in Disc Granulation
por: Li, Hui, et al.
Publicado: (2020)