Cargando…
Six novel immunoglobulin genes as biomarkers for better prognosis in triple-negative breast cancer by gene co-expression network analysis
Gene co-expression network analysis (GCNA) can detect alterations in regulatory activities in case/control comparisons. We propose a framework to detect novel genes and networks for predicting breast cancer recurrence. Thirty-four prognosis candidate genes were selected based on a literature review....
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418134/ https://www.ncbi.nlm.nih.gov/pubmed/30872752 http://dx.doi.org/10.1038/s41598-019-40826-w |
Sumario: | Gene co-expression network analysis (GCNA) can detect alterations in regulatory activities in case/control comparisons. We propose a framework to detect novel genes and networks for predicting breast cancer recurrence. Thirty-four prognosis candidate genes were selected based on a literature review. Four Gene Expression Omnibus Series (GSE) microarray datasets (n = 920) were used to create gene co-expression networks based on these candidates. We applied the framework to four comparison groups according to node (+/−) and recurrence (+/−). We identified a sub-network containing two candidate genes (LST1 and IGHM) and six novel genes (IGHA1, IGHD, IGHG1, IGHG3, IGLC2, and IGLJ3) related to B cell-specific immunoglobulin. These novel genes were correlated with recurrence under the control of node status and were found to function as tumor suppressors; higher mRNA expression indicated a lower risk of recurrence (hazard ratio, HR = 0.87, p = 0.001). We created an immune index score by performing principle component analysis and divided the genes into low and high groups. This discrete index significantly predicted relapse-free survival (RFS) (high: HR = 0.77, p = 0.019; low: control). Public tool KM Plotter and TCGA-BRCA gene expression data were used to validate. We confirmed these genes are correlated with RFS and distal metastasis-free survival (DMFS) in triple-negative breast cancer (TNBC) and general breast cancer. |
---|