Cargando…

Differential potentials of neural progenitors for the generation of neurons and non-neuronal cells in the developing amniote brain

Mature mammalian brains consist of variety of neuronal and non-neuronal cell types, which are progressively generated from embryonic neural progenitors through the embryonic and postnatal periods. However, it remains unknown whether all embryonic progenitors equivalently contribute to multiple cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Hashimoto, Yuki, Gotoh, Hitoshi, Ono, Katsuhiko, Nomura, Tadashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418204/
https://www.ncbi.nlm.nih.gov/pubmed/30872629
http://dx.doi.org/10.1038/s41598-019-40599-2
Descripción
Sumario:Mature mammalian brains consist of variety of neuronal and non-neuronal cell types, which are progressively generated from embryonic neural progenitors through the embryonic and postnatal periods. However, it remains unknown whether all embryonic progenitors equivalently contribute to multiple cell types, or individual neural progenitors have variable potentials to generate specific cell types in a stochastic manner. Here, we performed population-level tracing of mouse embryonic neural progenitors by using Tol2-mediated genome integration vectors. We identified that neural progenitors in early embryonic stages predominantly contribute to cortical or subcortical neurons than astrocytes, ependymal cells, and neuroblasts in the postnatal brain. Notably, neurons and astrocytes were cumulatively labeled by the increase of total labeled cells, suggesting constant neurogenic and gliogenic potentials of individual neural progenitors. On the contrary, numbers of labeled ependymal cell are more fluctuated, implicating intrinsic variability of progenitor potentials for ependymal cell generation. Differential progenitor potentials that contribute to neurons, astrocytes, and ependymal cells were also detected in the developing avian pallium. Our data suggest evolutionary conservations of coherent and variable potentials of neural progenitors that generate multiple cell types in the developing amniote brain.