Cargando…
Segmentation of Heavily Clustered Nuclei from Histopathological Images
Automated cell nucleus segmentation is the key to gain further insight into cell features and functionality which support computer-aided pathology in early diagnosis of diseases such as breast cancer and brain tumour. Despite considerable advances in automated segmentation, it still remains a challe...
Autores principales: | Abdolhoseini, Mahmoud, Kluge, Murielle G., Walker, Frederick R., Johnson, Sarah J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418222/ https://www.ncbi.nlm.nih.gov/pubmed/30872619 http://dx.doi.org/10.1038/s41598-019-38813-2 |
Ejemplares similares
-
Segmentation, Tracing, and Quantification of Microglial Cells from 3D Image Stacks
por: Abdolhoseini, Mahmoud, et al.
Publicado: (2019) -
Automated Segmentation of Nuclei in Breast Cancer Histopathology Images
por: Paramanandam, Maqlin, et al.
Publicado: (2016) -
Removing non-nuclei information from histopathological images: A preprocessing step towards improving nuclei segmentation methods
por: Moncayo, Ricardo, et al.
Publicado: (2023) -
Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images
por: Veta, Mitko, et al.
Publicado: (2013) -
Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning
por: Gudhe, Naga Raju, et al.
Publicado: (2023)