Cargando…

Development of a subsurface LIBS sensor for in situ groundwater quality monitoring with applications in CO(2) leak sensing in carbon sequestration

Sub-surface activity such as geologic carbon sequestration (GCS) has the potential to contaminate groundwater sources with dissolved metals originating from sub-surface brines or leaching of formation rock. Therefore, a Laser Induced Breakdown Spectroscopy (LIBS) based sensor is developed for sub-su...

Descripción completa

Detalles Bibliográficos
Autores principales: Hartzler, D. A., Jain, J. C., McIntyre, D. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418306/
https://www.ncbi.nlm.nih.gov/pubmed/30872695
http://dx.doi.org/10.1038/s41598-019-41025-3
Descripción
Sumario:Sub-surface activity such as geologic carbon sequestration (GCS) has the potential to contaminate groundwater sources with dissolved metals originating from sub-surface brines or leaching of formation rock. Therefore, a Laser Induced Breakdown Spectroscopy (LIBS) based sensor is developed for sub-surface water quality monitoring. The sensor head is built using a low cost passively Q-switched (PQSW) laser and is fiber coupled to a pump laser and a gated spectrometer. The prototype sensor head was constructed using off the shelf components and a custom monolithic, PQSW laser and testing has verified that the fiber coupled design performs as desired. The system shows good calibration linearity for tested elements (Ca, Sr, and K), quick data collection times, and Limits of Detection (LODs) that are comparable to or better than those of table top, actively Q-switched systems. The fiber coupled design gives the ability to separate the PQSW LIBS excitation laser from the pump source and spectrometer, allowing these expensive and fragile components to remain at the surface while only the low-cost, all optical sensor head needs to be exposed to the hostile downhole environment.