Cargando…
Lyme Disease Patient Trajectories Learned from Electronic Medical Data for Stratification of Disease Risk and Therapeutic Response
Lyme disease (LD) is the most common tick-borne illness in the United States. Although appropriate antibiotic treatment is effective for most cases, up to 20% of patients develop post-treatment Lyme disease syndrome (PTLDS). There is an urgent need to improve clinical management of LD using precise...
Autores principales: | Ichikawa, Osamu, Glicksberg, Benjamin S., Genes, Nicholas, Kidd, Brian A., Li, Li, Dudley, Joel T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418311/ https://www.ncbi.nlm.nih.gov/pubmed/30872757 http://dx.doi.org/10.1038/s41598-019-41128-x |
Ejemplares similares
-
Deep representation learning of electronic health records to unlock patient stratification at scale
por: Landi, Isotta, et al.
Publicado: (2020) -
Identification of therapeutic targets from genetic association studies using hierarchical component analysis
por: Lee, Hao-Chih, et al.
Publicado: (2020) -
A Network-Biology Informed Computational Drug Repositioning Strategy to Target Disease Risk Trajectories and Comorbidities of Peripheral Artery Disease
por: Shameer, Khader, et al.
Publicado: (2018) -
Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records
por: Miotto, Riccardo, et al.
Publicado: (2016) -
The Rapid Prediction of Carbapenem Resistance in Patients With Klebsiella pneumoniae Bacteremia Using Electronic Medical Record Data
por: Sullivan, Timothy, et al.
Publicado: (2018)