Cargando…

Clinical application of single‐molecule optical mapping to a multigeneration FSHD1 pedigree

INTRODUCTION: Facioscapulohumeral muscular dystrophy 1 (FSHD1) is a relatively common autosomal dominant adult muscular dystrophy with variable disease penetrance. The disease is caused by shortening of a D4Z4 repeat array located near the telomere of chromosome 4 at 4q35. This causes activation of...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Qian, Xu, Xueqin, Ding, Lirong, Li, Huanzheng, Xu, Chengyang, Gong, Yuyan, Liu, Ying, Mu, Ting, Leigh, Don, Cram, David S., Tang, Shaohua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418370/
https://www.ncbi.nlm.nih.gov/pubmed/30666819
http://dx.doi.org/10.1002/mgg3.565
Descripción
Sumario:INTRODUCTION: Facioscapulohumeral muscular dystrophy 1 (FSHD1) is a relatively common autosomal dominant adult muscular dystrophy with variable disease penetrance. The disease is caused by shortening of a D4Z4 repeat array located near the telomere of chromosome 4 at 4q35. This causes activation of a dormant gene DUX4, permitting aberrant DUX4 expression which is toxic to muscles. Molecular diagnosis of FSHD1 by Southern blot hybridization or FISH combing is difficult and time consuming, requiring specialist laboratories. As an alternative, we apply a novel approach for the diagnosis of FSHD1 utilizing single‐molecule optical mapping (SMOM). METHODS: Long DNA molecules with BssS1 enzyme marking were subjected to SMOM on the Bionano Genomics platform to determine the number of D4Z4 repeats. Southern blot and molecular combing were used to confirm the FSHD1 haplotypes. RESULTS: In a study of a five‐generation FSHD1 pedigree, SMOM correctly diagnosed the disease and normal haplotypes, identifying the founder 4qA disease allele as having 4 D4Z4 repeat units. Southern blot and molecular combing analysis confirmed the SMOM results for the 4qA disease and 4qB nondisease alleles. CONCLUSION: Based on our findings, we propose that SMOM is a reliable and accurate technique suitable for the molecular diagnosis of FSHD1.