Cargando…

Insecticide‐treated nets for preventing malaria

BACKGROUND: A previous version of this Cochrane Review identified that insecticide‐treated nets (ITNs) are effective at reducing child mortality, parasite prevalence, and uncomplicated and severe malaria episodes. Insecticide‐treated nets have since become a core intervention for malaria control and...

Descripción completa

Detalles Bibliográficos
Autores principales: Pryce, Joseph, Richardson, Marty, Lengeler, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Ltd 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418392/
https://www.ncbi.nlm.nih.gov/pubmed/30398672
http://dx.doi.org/10.1002/14651858.CD000363.pub3
_version_ 1783403729604575232
author Pryce, Joseph
Richardson, Marty
Lengeler, Christian
author_facet Pryce, Joseph
Richardson, Marty
Lengeler, Christian
author_sort Pryce, Joseph
collection PubMed
description BACKGROUND: A previous version of this Cochrane Review identified that insecticide‐treated nets (ITNs) are effective at reducing child mortality, parasite prevalence, and uncomplicated and severe malaria episodes. Insecticide‐treated nets have since become a core intervention for malaria control and have contributed greatly to the dramatic decline in disease incidence and malaria‐related deaths seen since the turn of the millennium. However, this time period has also seen a rise in resistance to pyrethroids (the insecticide used in ITNs), raising questions over whether the evidence from trials conducted before resistance became widespread can be applied to estimate the impact of ITNs on malaria transmission today. OBJECTIVES: The primary objective of this review was to assess the impact of ITNs on mortality and malaria morbidity, incorporating any evidence published since the previous update into new and existing analyses, and assessing the certainty of the resulting evidence using GRADE. SEARCH METHODS: We searched the Cochrane Infectious Diseases Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) published in the Cochrane Library, MEDLINE, Embase, LILACS, the World Health Organization (WHO) International Clinical Trials Registry Platform, ClinicalTrials.gov, and the ISRCTN registry for new trials published since 2004 and up to 18 April 2018. SELECTION CRITERIA: We included individual randomized controlled trials (RCTs) and cluster RCTs comparing bed nets or curtains treated with a synthetic pyrethroid insecticide at a minimum target impregnation dose recommended by the WHO with no nets or untreated nets. DATA COLLECTION AND ANALYSIS: One review author assessed the identified trials for eligibility and risk of bias, and extracted data. We compared intervention and control data using risk ratios (RRs), rate ratios, and mean differences, and presented all results with their associated 95% confidence intervals (CIs). We assessed the certainty of evidence using the GRADE approach. We drew on evidence from a meta‐analysis of entomological outcomes stratified by insecticide resistance from 2014 to inform the GRADE assessments. MAIN RESULTS: Our updated search identified three new trials. A total of 23 trials met the inclusion criteria, enrolling more than 275,793 adults and children. The included studies were conducted between 1987 and 2001. ITN versus no nets Insecticide‐treated nets reduce child mortality from all causes by 17% compared to no nets (rate ratio 0.83, 95% CI 0.77 to 0.89; 5 trials, 200,833 participants, high‐certainty evidence). This corresponds to a saving of 5.6 lives (95% CI 3.6 to 7.6) each year for every 1000 children protected with ITNs. Insecticide‐treated nets also reduce the incidence of uncomplicated episodes of Plasmodium falciparum malaria by almost a half (rate ratio 0.55, 95% CI 0.48 to 0.64; 5 trials, 35,551 participants, high‐certainty evidence) and probably reduce the incidence of uncomplicated episodes of Plasmodium vivax malaria (risk ratio (RR) 0.61, 95% CI 0.48 to 0.77; 2 trials, 10,967 participants, moderate‐certainty evidence). Insecticide‐treated nets were also shown to reduce the prevalence of P falciparum malaria by 17% compared to no nets (RR 0.83, 95% CI 0.71 to 0.98; 6 trials, 18,809 participants, high‐certainty evidence) but may have little or no effect on the prevalence of P vivax malaria (RR 1.00, 95% CI 0.75 to 1.34; 2 trials, 10,967 participants, low‐certainty evidence). A 44% reduction in the incidence of severe malaria episodes was seen in the ITN group (rate ratio 0.56, 95% CI 0.38 to 0.82; 2 trials, 31,173 participants, high‐certainty evidence), as well as an increase in mean haemoglobin (expressed as mean packed cell volume) compared to the no‐net group (mean difference 1.29, 95% CI 0.42 to 2.16; 5 trials, 11,489 participants, high‐certainty evidence). ITN versus untreated nets Insecticide‐treated nets probably reduce child mortality from all causes by a third compared to untreated nets (rate ratio 0.67, 95% CI 0.36 to 1.23; 2 trials, 25,389 participants, moderate‐certainty evidence). This corresponds to a saving of 3.5 lives (95% CI ‐2.4 to 6.8) each year for every 1000 children protected with ITNs. Insecticide‐treated nets also reduce the incidence of uncomplicated P falciparum malaria episodes (rate ratio 0.58, 95% CI 0.44 to 0.78; 5 trials, 2036 participants, high‐certainty evidence) and may also reduce the incidence of uncomplicated P vixax malaria episodes (rate ratio 0.73, 95% CI 0.51 to 1.05; 3 trials, 1535 participants, low‐certainty evidence). Use of an ITN probably reduces P falciparum prevalence by one‐tenth in comparison to use of untreated nets (RR 0.91, 95% CI 0.78 to 1.05; 3 trials, 2,259 participants, moderate‐certainty evidence). However, based on the current evidence it is unclear whether or not ITNs impact on P vivax prevalence (1 trial, 350 participants, very low certainty evidence) or mean packed cell volume (2 trials, 1,909 participants, low certainty evidence). AUTHORS' CONCLUSIONS: Although there is some evidence that insecticide resistance frequency has some effects on mosquito mortality, it is unclear how quantitatively important this is. It appeared insufficient to downgrade the strong evidence of benefit on mortality and malaria illness from the trials conducted earlier 12 April 2019 Up to date All studies incorporated from most recent search All eligible published studies found in the last search (18 Apr, 2018) were included
format Online
Article
Text
id pubmed-6418392
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley & Sons, Ltd
record_format MEDLINE/PubMed
spelling pubmed-64183922019-05-10 Insecticide‐treated nets for preventing malaria Pryce, Joseph Richardson, Marty Lengeler, Christian Cochrane Database Syst Rev BACKGROUND: A previous version of this Cochrane Review identified that insecticide‐treated nets (ITNs) are effective at reducing child mortality, parasite prevalence, and uncomplicated and severe malaria episodes. Insecticide‐treated nets have since become a core intervention for malaria control and have contributed greatly to the dramatic decline in disease incidence and malaria‐related deaths seen since the turn of the millennium. However, this time period has also seen a rise in resistance to pyrethroids (the insecticide used in ITNs), raising questions over whether the evidence from trials conducted before resistance became widespread can be applied to estimate the impact of ITNs on malaria transmission today. OBJECTIVES: The primary objective of this review was to assess the impact of ITNs on mortality and malaria morbidity, incorporating any evidence published since the previous update into new and existing analyses, and assessing the certainty of the resulting evidence using GRADE. SEARCH METHODS: We searched the Cochrane Infectious Diseases Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) published in the Cochrane Library, MEDLINE, Embase, LILACS, the World Health Organization (WHO) International Clinical Trials Registry Platform, ClinicalTrials.gov, and the ISRCTN registry for new trials published since 2004 and up to 18 April 2018. SELECTION CRITERIA: We included individual randomized controlled trials (RCTs) and cluster RCTs comparing bed nets or curtains treated with a synthetic pyrethroid insecticide at a minimum target impregnation dose recommended by the WHO with no nets or untreated nets. DATA COLLECTION AND ANALYSIS: One review author assessed the identified trials for eligibility and risk of bias, and extracted data. We compared intervention and control data using risk ratios (RRs), rate ratios, and mean differences, and presented all results with their associated 95% confidence intervals (CIs). We assessed the certainty of evidence using the GRADE approach. We drew on evidence from a meta‐analysis of entomological outcomes stratified by insecticide resistance from 2014 to inform the GRADE assessments. MAIN RESULTS: Our updated search identified three new trials. A total of 23 trials met the inclusion criteria, enrolling more than 275,793 adults and children. The included studies were conducted between 1987 and 2001. ITN versus no nets Insecticide‐treated nets reduce child mortality from all causes by 17% compared to no nets (rate ratio 0.83, 95% CI 0.77 to 0.89; 5 trials, 200,833 participants, high‐certainty evidence). This corresponds to a saving of 5.6 lives (95% CI 3.6 to 7.6) each year for every 1000 children protected with ITNs. Insecticide‐treated nets also reduce the incidence of uncomplicated episodes of Plasmodium falciparum malaria by almost a half (rate ratio 0.55, 95% CI 0.48 to 0.64; 5 trials, 35,551 participants, high‐certainty evidence) and probably reduce the incidence of uncomplicated episodes of Plasmodium vivax malaria (risk ratio (RR) 0.61, 95% CI 0.48 to 0.77; 2 trials, 10,967 participants, moderate‐certainty evidence). Insecticide‐treated nets were also shown to reduce the prevalence of P falciparum malaria by 17% compared to no nets (RR 0.83, 95% CI 0.71 to 0.98; 6 trials, 18,809 participants, high‐certainty evidence) but may have little or no effect on the prevalence of P vivax malaria (RR 1.00, 95% CI 0.75 to 1.34; 2 trials, 10,967 participants, low‐certainty evidence). A 44% reduction in the incidence of severe malaria episodes was seen in the ITN group (rate ratio 0.56, 95% CI 0.38 to 0.82; 2 trials, 31,173 participants, high‐certainty evidence), as well as an increase in mean haemoglobin (expressed as mean packed cell volume) compared to the no‐net group (mean difference 1.29, 95% CI 0.42 to 2.16; 5 trials, 11,489 participants, high‐certainty evidence). ITN versus untreated nets Insecticide‐treated nets probably reduce child mortality from all causes by a third compared to untreated nets (rate ratio 0.67, 95% CI 0.36 to 1.23; 2 trials, 25,389 participants, moderate‐certainty evidence). This corresponds to a saving of 3.5 lives (95% CI ‐2.4 to 6.8) each year for every 1000 children protected with ITNs. Insecticide‐treated nets also reduce the incidence of uncomplicated P falciparum malaria episodes (rate ratio 0.58, 95% CI 0.44 to 0.78; 5 trials, 2036 participants, high‐certainty evidence) and may also reduce the incidence of uncomplicated P vixax malaria episodes (rate ratio 0.73, 95% CI 0.51 to 1.05; 3 trials, 1535 participants, low‐certainty evidence). Use of an ITN probably reduces P falciparum prevalence by one‐tenth in comparison to use of untreated nets (RR 0.91, 95% CI 0.78 to 1.05; 3 trials, 2,259 participants, moderate‐certainty evidence). However, based on the current evidence it is unclear whether or not ITNs impact on P vivax prevalence (1 trial, 350 participants, very low certainty evidence) or mean packed cell volume (2 trials, 1,909 participants, low certainty evidence). AUTHORS' CONCLUSIONS: Although there is some evidence that insecticide resistance frequency has some effects on mosquito mortality, it is unclear how quantitatively important this is. It appeared insufficient to downgrade the strong evidence of benefit on mortality and malaria illness from the trials conducted earlier 12 April 2019 Up to date All studies incorporated from most recent search All eligible published studies found in the last search (18 Apr, 2018) were included John Wiley & Sons, Ltd 2018-11-06 /pmc/articles/PMC6418392/ /pubmed/30398672 http://dx.doi.org/10.1002/14651858.CD000363.pub3 Text en Copyright © 2019 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the Creative Commons Attribution‐Non‐Commercial (https://creativecommons.org/licenses/by-nc/4.0/) Licence, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Pryce, Joseph
Richardson, Marty
Lengeler, Christian
Insecticide‐treated nets for preventing malaria
title Insecticide‐treated nets for preventing malaria
title_full Insecticide‐treated nets for preventing malaria
title_fullStr Insecticide‐treated nets for preventing malaria
title_full_unstemmed Insecticide‐treated nets for preventing malaria
title_short Insecticide‐treated nets for preventing malaria
title_sort insecticide‐treated nets for preventing malaria
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418392/
https://www.ncbi.nlm.nih.gov/pubmed/30398672
http://dx.doi.org/10.1002/14651858.CD000363.pub3
work_keys_str_mv AT prycejoseph insecticidetreatednetsforpreventingmalaria
AT richardsonmarty insecticidetreatednetsforpreventingmalaria
AT lengelerchristian insecticidetreatednetsforpreventingmalaria