Cargando…

Preparation and Physicochemical Characteristics of Thermo-Responsive Emamectin BenzoateMicrocapsules

Thermo-responsive release emamectin benzoate microcapsules were successfully prepared with a polydopamine (PDA)-g-poly(N-isopropylacrylamide) (PNIPAm) multifunctional layer. Preparation of emamectin benzoate microcapsules was first studied by emulsion interfacial-polymerization using PDA as a wall m...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Yue, Wang, Yan, Zhao, Xiang, Sun, Changjiao, Cui, Bo, Gao, Fei, Zeng, Zhanghua, Cui, Haixin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418524/
https://www.ncbi.nlm.nih.gov/pubmed/30965720
http://dx.doi.org/10.3390/polym9090418
Descripción
Sumario:Thermo-responsive release emamectin benzoate microcapsules were successfully prepared with a polydopamine (PDA)-g-poly(N-isopropylacrylamide) (PNIPAm) multifunctional layer. Preparation of emamectin benzoate microcapsules was first studied by emulsion interfacial-polymerization using PDA as a wall material. Then the amino-terminated PNIPAm was grafted on the PDA layer by its amino group in aqueous solution. Physicochemical characterization of microcapsules was obtained by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and dynamic light scattering (DLS). Kinetic study of emamectin benzoate release showed that the microcapsules exhibit sustained- and controlled-release properties. The multifunctional layer can release emamectin benzoate easily when the temperature was below the lower critical solution temperature (LCST). In contrast, when the temperature increased above the LCST, the release rate was reduced. The results indicated that these microcapsules with excellent thermo-sensitivity would be promising in the research field of pesticide microcapsules.