Cargando…

Dormant Polymers and Their Role in Living and Controlled Polymerizations; Influence on Polymer Chemistry, Particularly on the Ring Opening Polymerization

Living polymerization discovered by Professor Szwarc is well known to all chemists. Some of the living polymerizations involve dormancy, a process in which there is an equilibrium (or at least exchange) between two types of living polymers, namely active at the given moment and dormant at this momen...

Descripción completa

Detalles Bibliográficos
Autores principales: Penczek, Stanislaw, Pretula, Julia, Lewiński, Piotr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418526/
https://www.ncbi.nlm.nih.gov/pubmed/30965944
http://dx.doi.org/10.3390/polym9120646
Descripción
Sumario:Living polymerization discovered by Professor Szwarc is well known to all chemists. Some of the living polymerizations involve dormancy, a process in which there is an equilibrium (or at least exchange) between two types of living polymers, namely active at the given moment and dormant at this moment and becoming active in the process of activation. These processes are at least equally important although less known. This mini review is devoted to these particular living polymerizations, mostly polymerizations by the Ring-Opening Polymerization mechanisms (ROP) compared with some selected close to living vinyl polymerizations (the most spectacular is Atom Transfer Radical Polymerization (ATRP)) involving dormancy. Cationic polymerization of tetrahydrofuran was the first one, based on equilibrium between oxonium ions (active) and covalent (esters) dormant species, i.e., temporarily inactive, and is described in detail. The other systems discussed are polymerization of oxazolines and cyclic esters as well as controlled radical and cationic polymerizations of vinyl monomers.