Cargando…
Experimental Evidence of Large Amplitude pH Mediated Autonomous Chemomechanical Oscillation
Large amplitude autonomous chemomechanical oscillations were observed in a coupled system consisting of a porous pH-responsive hydrogel and a bromate-sulfite-manganese (II) pH oscillatory reaction. The porous structure effectively improves the chemomechanical response speed, and the negative feedbac...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418536/ https://www.ncbi.nlm.nih.gov/pubmed/30965854 http://dx.doi.org/10.3390/polym9110554 |
Sumario: | Large amplitude autonomous chemomechanical oscillations were observed in a coupled system consisting of a porous pH-responsive hydrogel and a bromate-sulfite-manganese (II) pH oscillatory reaction. The porous structure effectively improves the chemomechanical response speed, and the negative feedback species of the bulk oscillation Mn(2+) takes part in the coupling by forming complex and physical crosslinks with the responsive group in the gel. It strengthens the porous gel by forming additional networks, which may contribute to sustaining the long-lasting chemomechanical oscillation. Additionally, the interaction between Mn(2+) and the hydrogel alters the period of the oscillatory reaction due to its binding competition with H(+), the positive feedback species. |
---|