Cargando…

New Insight into Time-Temperature Correlation for Polymer Relaxations Ranging from Secondary Relaxation to Terminal Flow: Application of a Universal and Developed WLF Equation

The three equations involved in the time-temperature superposition (TTS) of a polymer, i.e., Williams–Landel–Ferry (WLF), Vogel–Fulcher–Tammann–Hesse (VFTH) and the Arrhenius equation, were re-examined, and the mathematical equivalence of the WLF form to the Arrhenius form was revealed. As a result,...

Descripción completa

Detalles Bibliográficos
Autores principales: Shangguan, Yonggang, Chen, Feng, Jia, Erwen, Lin, Yu, Hu, Jun, Zheng, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418538/
https://www.ncbi.nlm.nih.gov/pubmed/30965871
http://dx.doi.org/10.3390/polym9110567
_version_ 1783403752935391232
author Shangguan, Yonggang
Chen, Feng
Jia, Erwen
Lin, Yu
Hu, Jun
Zheng, Qiang
author_facet Shangguan, Yonggang
Chen, Feng
Jia, Erwen
Lin, Yu
Hu, Jun
Zheng, Qiang
author_sort Shangguan, Yonggang
collection PubMed
description The three equations involved in the time-temperature superposition (TTS) of a polymer, i.e., Williams–Landel–Ferry (WLF), Vogel–Fulcher–Tammann–Hesse (VFTH) and the Arrhenius equation, were re-examined, and the mathematical equivalence of the WLF form to the Arrhenius form was revealed. As a result, a developed WLF (DWLF) equation was established to describe the temperature dependence of relaxation property for the polymer ranging from secondary relaxation to terminal flow, and its necessary criteria for universal application were proposed. TTS results of viscoelastic behavior for different polymers including isotactic polypropylene (iPP), high density polyethylene (HDPE), low density polyethylene (LDPE) and ethylene-propylene rubber (EPR) were well achieved by the DWLF equation at high temperatures. Through investigating the phase-separation behavior of poly(methyl methacrylate)/poly(styrene-co-maleic anhydride) (PMMA/SMA) and iPP/EPR blends, it was found that the DWLF equation can describe the phase separation behavior of the amorphous/amorphous blend well, while the nucleation process leads to a smaller shift factor for the crystalline/amorphous blend in the melting temperature region. Either the TTS of polystyrene (PS) and PMMA or the secondary relaxations of PMMA and polyvinyl chloride (PVC) confirmed that the Arrhenius equation can be valid only in the high temperature region and invalid in the vicinity of glass transition due to the strong dependence of apparent activation energy on temperature; while the DWLF equation can be employed in the whole temperature region including secondary relaxation and from glass transition to terminal relaxation. The theoretical explanation for the universal application of the DWLF equation was also revealed through discussing the influences of free volume and chemical structure on the activation energy of polymer relaxations.
format Online
Article
Text
id pubmed-6418538
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64185382019-04-02 New Insight into Time-Temperature Correlation for Polymer Relaxations Ranging from Secondary Relaxation to Terminal Flow: Application of a Universal and Developed WLF Equation Shangguan, Yonggang Chen, Feng Jia, Erwen Lin, Yu Hu, Jun Zheng, Qiang Polymers (Basel) Article The three equations involved in the time-temperature superposition (TTS) of a polymer, i.e., Williams–Landel–Ferry (WLF), Vogel–Fulcher–Tammann–Hesse (VFTH) and the Arrhenius equation, were re-examined, and the mathematical equivalence of the WLF form to the Arrhenius form was revealed. As a result, a developed WLF (DWLF) equation was established to describe the temperature dependence of relaxation property for the polymer ranging from secondary relaxation to terminal flow, and its necessary criteria for universal application were proposed. TTS results of viscoelastic behavior for different polymers including isotactic polypropylene (iPP), high density polyethylene (HDPE), low density polyethylene (LDPE) and ethylene-propylene rubber (EPR) were well achieved by the DWLF equation at high temperatures. Through investigating the phase-separation behavior of poly(methyl methacrylate)/poly(styrene-co-maleic anhydride) (PMMA/SMA) and iPP/EPR blends, it was found that the DWLF equation can describe the phase separation behavior of the amorphous/amorphous blend well, while the nucleation process leads to a smaller shift factor for the crystalline/amorphous blend in the melting temperature region. Either the TTS of polystyrene (PS) and PMMA or the secondary relaxations of PMMA and polyvinyl chloride (PVC) confirmed that the Arrhenius equation can be valid only in the high temperature region and invalid in the vicinity of glass transition due to the strong dependence of apparent activation energy on temperature; while the DWLF equation can be employed in the whole temperature region including secondary relaxation and from glass transition to terminal relaxation. The theoretical explanation for the universal application of the DWLF equation was also revealed through discussing the influences of free volume and chemical structure on the activation energy of polymer relaxations. MDPI 2017-11-02 /pmc/articles/PMC6418538/ /pubmed/30965871 http://dx.doi.org/10.3390/polym9110567 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Shangguan, Yonggang
Chen, Feng
Jia, Erwen
Lin, Yu
Hu, Jun
Zheng, Qiang
New Insight into Time-Temperature Correlation for Polymer Relaxations Ranging from Secondary Relaxation to Terminal Flow: Application of a Universal and Developed WLF Equation
title New Insight into Time-Temperature Correlation for Polymer Relaxations Ranging from Secondary Relaxation to Terminal Flow: Application of a Universal and Developed WLF Equation
title_full New Insight into Time-Temperature Correlation for Polymer Relaxations Ranging from Secondary Relaxation to Terminal Flow: Application of a Universal and Developed WLF Equation
title_fullStr New Insight into Time-Temperature Correlation for Polymer Relaxations Ranging from Secondary Relaxation to Terminal Flow: Application of a Universal and Developed WLF Equation
title_full_unstemmed New Insight into Time-Temperature Correlation for Polymer Relaxations Ranging from Secondary Relaxation to Terminal Flow: Application of a Universal and Developed WLF Equation
title_short New Insight into Time-Temperature Correlation for Polymer Relaxations Ranging from Secondary Relaxation to Terminal Flow: Application of a Universal and Developed WLF Equation
title_sort new insight into time-temperature correlation for polymer relaxations ranging from secondary relaxation to terminal flow: application of a universal and developed wlf equation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418538/
https://www.ncbi.nlm.nih.gov/pubmed/30965871
http://dx.doi.org/10.3390/polym9110567
work_keys_str_mv AT shangguanyonggang newinsightintotimetemperaturecorrelationforpolymerrelaxationsrangingfromsecondaryrelaxationtoterminalflowapplicationofauniversalanddevelopedwlfequation
AT chenfeng newinsightintotimetemperaturecorrelationforpolymerrelaxationsrangingfromsecondaryrelaxationtoterminalflowapplicationofauniversalanddevelopedwlfequation
AT jiaerwen newinsightintotimetemperaturecorrelationforpolymerrelaxationsrangingfromsecondaryrelaxationtoterminalflowapplicationofauniversalanddevelopedwlfequation
AT linyu newinsightintotimetemperaturecorrelationforpolymerrelaxationsrangingfromsecondaryrelaxationtoterminalflowapplicationofauniversalanddevelopedwlfequation
AT hujun newinsightintotimetemperaturecorrelationforpolymerrelaxationsrangingfromsecondaryrelaxationtoterminalflowapplicationofauniversalanddevelopedwlfequation
AT zhengqiang newinsightintotimetemperaturecorrelationforpolymerrelaxationsrangingfromsecondaryrelaxationtoterminalflowapplicationofauniversalanddevelopedwlfequation