Cargando…

The Effect of Hydrogen Bonding on Radical Semi-Batch Copolymerization of Butyl Acrylate and 2-Hydroxyethyl Acrylate

The radical copolymerization of butyl acrylate (BA) and 2-hydroxyethyl acrylate (HEA) was investigated under batch and semi-batch operations, with a focus on the influence of hydrogen-bonding on acrylate backbiting. The effect of hydrogen bonding on HEA to BA relative incorporation rates during copo...

Descripción completa

Detalles Bibliográficos
Autores principales: Schier, Jan E. S., Cohen-Sacal, David, Larsen, Owen R., Hutchinson, Robin A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418611/
https://www.ncbi.nlm.nih.gov/pubmed/30971042
http://dx.doi.org/10.3390/polym9080368
Descripción
Sumario:The radical copolymerization of butyl acrylate (BA) and 2-hydroxyethyl acrylate (HEA) was investigated under batch and semi-batch operations, with a focus on the influence of hydrogen-bonding on acrylate backbiting. The effect of hydrogen bonding on HEA to BA relative incorporation rates during copolymerization, previously seen in low-conversion kinetic studies, was also observed under high-conversion semi-batch conditions. However, overall reaction rates (as indicated by free monomer concentrations), polymer molar masses, and branching levels did not vary as copolymer HEA content was increased from 0 to 40 wt % in the semi-batch system. In contrast, introduction of a H-bonding solvent, n-pentanol, led to an observable decrease in branching levels, and branching levels were also reduced in batch (co)polymerizations with HEA. These differences can be attributed to the low levels of unreacted HEA in the starved-feed semi-batch system.