Cargando…
Thermally Stable Bulk Heterojunction Prepared by Sequential Deposition of Nanostructured Polymer and Fullerene
A morphologically-stable polymer/fullerene heterojunction has been prepared by minimizing the intermixing between polymer and fullerene via sequential deposition (SqD) of a polymer and a fullerene solution. A low crystalline conjugated polymer of PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopen...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418660/ https://www.ncbi.nlm.nih.gov/pubmed/30965759 http://dx.doi.org/10.3390/polym9090456 |
Sumario: | A morphologically-stable polymer/fullerene heterojunction has been prepared by minimizing the intermixing between polymer and fullerene via sequential deposition (SqD) of a polymer and a fullerene solution. A low crystalline conjugated polymer of PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b′]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)]) has been utilized for the polymer layer and PC(71)BM (phenyl-C(71)-butyric-acid-methyl ester) for the fullerene layer, respectively. Firstly, a nanostructured PCPDTBT bottom layer was developed by utilizing various additives to increase the surface area of the polymer film. The PC(71)BM solution was prepared by dissolving it in the 1,2-dichloroethane (DCE), exhibiting a lower vapor pressure and slower diffusion into the polymer layer. The deposition of the PC(71)BM solution on the nanostructured PCPDTBT layer forms an inter-digitated bulk heterojunction (ID-BHJ) with minimized intermixing. The organic photovoltaic (OPV) device utilizing the ID-BHJ photoactive layer exhibits a highly reproducible solar cell performance. In spite of restricted intermixing between the PC(71)BM and the PCPDTBT, the efficiency of ID-BHJ OPVs (3.36%) is comparable to that of OPVs (3.87%) prepared by the conventional method (deposition of a blended solution of polymer:fullerene). The thermal stability of the ID-BHJ is superior to the bulk heterojunction (BHJ) prepared by the conventional method. The ID-BHJ OPV maintains 70% of its initial efficiency after thermal stress application for twelve days at 80 °C, whereas the conventional BHJ OPV maintains only 40% of its initial efficiency. |
---|