Cargando…

Simple and High Yield Synthesis of Metal-Polymer Nanocomposites: The Role of Theta-Centrifugation as an Essential Purification Step

Nanocomposites are an important materials class, which strives to foster synergistic effects from the intimate mixture of two vastly different materials. Inorganic nanoparticles decorated with polymer ligands, for instance, aim to combine the processing flexibility of polymers with the mechanical ro...

Descripción completa

Detalles Bibliográficos
Autores principales: Hummel, Patrick, Lerch, Arne, Goller, Sebastian Manfred, Karg, Matthias, Retsch, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418674/
https://www.ncbi.nlm.nih.gov/pubmed/30965960
http://dx.doi.org/10.3390/polym9120659
Descripción
Sumario:Nanocomposites are an important materials class, which strives to foster synergistic effects from the intimate mixture of two vastly different materials. Inorganic nanoparticles decorated with polymer ligands, for instance, aim to combine the processing flexibility of polymers with the mechanical robustness of solid state materials. The fabrication and purification of such composite nanoparticles, however, still presents a synthetic challenge. Here, we present a simple synthesis of silver polystyrene nanocomposites with a controllable interparticle distance. The interparticle distance can be well-controlled with a few nanometer precision using polystyrene ligands with various molecular weights. The nanoparticle and polymer ligand synthesis yield both materials on gram scales. Consequently, the polymer nanocomposites can also be fabricated in such large amounts. Most importantly, we introduce Θ-centrifugation as a purification method, which is capable of purifying large nanocomposite batches in a reproducible manner. We employ a range of characterization methods to prove the successful purification procedure, such as transmission electron microscopy, thermogravimetric analysis, and dynamic light scattering. Our contribution will be of high interest for many groups working on nanocomposite materials, where the sample purification has been a challenge up to now.