Cargando…
Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches
Janus particles are of great research interest because of their reduced symmetry, which provides them with unique physical and chemical properties. Such particles can be prepared from spherical structures through colloidal assembly. Whilst colloidal assembly has the potential to be a low cost and sc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418681/ https://www.ncbi.nlm.nih.gov/pubmed/30965778 http://dx.doi.org/10.3390/polym9100475 |
_version_ | 1783403786574757888 |
---|---|
author | Mann, Daniel Voogt, Stefanie Keul, Helmut Möller, Martin Verheijen, Marcel Buskens, Pascal |
author_facet | Mann, Daniel Voogt, Stefanie Keul, Helmut Möller, Martin Verheijen, Marcel Buskens, Pascal |
author_sort | Mann, Daniel |
collection | PubMed |
description | Janus particles are of great research interest because of their reduced symmetry, which provides them with unique physical and chemical properties. Such particles can be prepared from spherical structures through colloidal assembly. Whilst colloidal assembly has the potential to be a low cost and scalable process, it typically lacks selectivity. As a consequence, it results in a complex mixture of particles of different architectures, which is tedious to purify. Very recently, we reported the colloidal synthesis of Au semishells, making use of polystyrene–polyphenylsiloxane Janus particles as an intermediate product (Chem. Commun. 2017, 53, 3898–3901). Here, we demonstrate that these Janus particles are realized through colloidal assembly of spherical glucose-functionalized polystyrene particles and an emulsion of phenyltrimethoxysilane in aqueous ammonia, followed by interfacial polycondensation to form the polyphenylsiloxane patch. Both the polystyrene spheres and the emulsion of Ph-TMS in aqueous ammonia are stabilized by a surfmer—a reactive surfactant. The colloidal assembly reported in this manuscript proceeds with an unexpected high selectivity, which makes this process exceptionally interesting for the synthesis of Janus particles. Furthermore, we report insights into the details of the mechanism of formation of these Janus particles, and apply those to adapt the synthesis conditions to produce polystyrene particles selectively decorated with multiple polyphenylsiloxane patches, e.g., raspberry particles. |
format | Online Article Text |
id | pubmed-6418681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64186812019-04-02 Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches Mann, Daniel Voogt, Stefanie Keul, Helmut Möller, Martin Verheijen, Marcel Buskens, Pascal Polymers (Basel) Article Janus particles are of great research interest because of their reduced symmetry, which provides them with unique physical and chemical properties. Such particles can be prepared from spherical structures through colloidal assembly. Whilst colloidal assembly has the potential to be a low cost and scalable process, it typically lacks selectivity. As a consequence, it results in a complex mixture of particles of different architectures, which is tedious to purify. Very recently, we reported the colloidal synthesis of Au semishells, making use of polystyrene–polyphenylsiloxane Janus particles as an intermediate product (Chem. Commun. 2017, 53, 3898–3901). Here, we demonstrate that these Janus particles are realized through colloidal assembly of spherical glucose-functionalized polystyrene particles and an emulsion of phenyltrimethoxysilane in aqueous ammonia, followed by interfacial polycondensation to form the polyphenylsiloxane patch. Both the polystyrene spheres and the emulsion of Ph-TMS in aqueous ammonia are stabilized by a surfmer—a reactive surfactant. The colloidal assembly reported in this manuscript proceeds with an unexpected high selectivity, which makes this process exceptionally interesting for the synthesis of Janus particles. Furthermore, we report insights into the details of the mechanism of formation of these Janus particles, and apply those to adapt the synthesis conditions to produce polystyrene particles selectively decorated with multiple polyphenylsiloxane patches, e.g., raspberry particles. MDPI 2017-09-28 /pmc/articles/PMC6418681/ /pubmed/30965778 http://dx.doi.org/10.3390/polym9100475 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mann, Daniel Voogt, Stefanie Keul, Helmut Möller, Martin Verheijen, Marcel Buskens, Pascal Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches |
title | Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches |
title_full | Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches |
title_fullStr | Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches |
title_full_unstemmed | Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches |
title_short | Synthesis of Polystyrene–Polyphenylsiloxane Janus Particles through Colloidal Assembly with Unexpected High Selectivity: Mechanistic Insights and Their Application in the Design of Polystyrene Particles with Multiple Polyphenylsiloxane Patches |
title_sort | synthesis of polystyrene–polyphenylsiloxane janus particles through colloidal assembly with unexpected high selectivity: mechanistic insights and their application in the design of polystyrene particles with multiple polyphenylsiloxane patches |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418681/ https://www.ncbi.nlm.nih.gov/pubmed/30965778 http://dx.doi.org/10.3390/polym9100475 |
work_keys_str_mv | AT manndaniel synthesisofpolystyrenepolyphenylsiloxanejanusparticlesthroughcolloidalassemblywithunexpectedhighselectivitymechanisticinsightsandtheirapplicationinthedesignofpolystyreneparticleswithmultiplepolyphenylsiloxanepatches AT voogtstefanie synthesisofpolystyrenepolyphenylsiloxanejanusparticlesthroughcolloidalassemblywithunexpectedhighselectivitymechanisticinsightsandtheirapplicationinthedesignofpolystyreneparticleswithmultiplepolyphenylsiloxanepatches AT keulhelmut synthesisofpolystyrenepolyphenylsiloxanejanusparticlesthroughcolloidalassemblywithunexpectedhighselectivitymechanisticinsightsandtheirapplicationinthedesignofpolystyreneparticleswithmultiplepolyphenylsiloxanepatches AT mollermartin synthesisofpolystyrenepolyphenylsiloxanejanusparticlesthroughcolloidalassemblywithunexpectedhighselectivitymechanisticinsightsandtheirapplicationinthedesignofpolystyreneparticleswithmultiplepolyphenylsiloxanepatches AT verheijenmarcel synthesisofpolystyrenepolyphenylsiloxanejanusparticlesthroughcolloidalassemblywithunexpectedhighselectivitymechanisticinsightsandtheirapplicationinthedesignofpolystyreneparticleswithmultiplepolyphenylsiloxanepatches AT buskenspascal synthesisofpolystyrenepolyphenylsiloxanejanusparticlesthroughcolloidalassemblywithunexpectedhighselectivitymechanisticinsightsandtheirapplicationinthedesignofpolystyreneparticleswithmultiplepolyphenylsiloxanepatches |