Cargando…

Detection of Black Plastics in the Middle Infrared Spectrum (MIR) Using Photon Up-Conversion Technique for Polymer Recycling Purposes

The identification of black polymers which contain about 0.5 to 3 mass percent soot or black master batch is still an essential problem in recycling sorting processes. Near infrared spectroscopy (NIRS) of non-black polymers offers a reliable and fast identification, and is therefore suitable for ind...

Descripción completa

Detalles Bibliográficos
Autores principales: Becker, Wolfgang, Sachsenheimer, Kerstin, Klemenz, Melanie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418689/
https://www.ncbi.nlm.nih.gov/pubmed/30965736
http://dx.doi.org/10.3390/polym9090435
Descripción
Sumario:The identification of black polymers which contain about 0.5 to 3 mass percent soot or black master batch is still an essential problem in recycling sorting processes. Near infrared spectroscopy (NIRS) of non-black polymers offers a reliable and fast identification, and is therefore suitable for industrial application. NIRS is consequently widely used in polymer sorting plants. However, this method cannot be used for black polymers because small amounts of carbon black or soot absorb all light in the NIR spectral region. Spectroscopy in the mid infrared spectral region (MIR) offers a possibility to identify black polymers. MIR spectral measurements carried out with Fourier-transform infrared spectrometers (FTIR) are not fast enough to meet economic requirements in sorting plants. By contrast, spectrometer systems based on the photon up-conversion technique are fast and sensitive enough and can be applied to sort black polymer parts. Such a system is able to measure several thousand spectra per second hence is suitable for industrial applications. The results of spectral measurements of black polymers are presented.