Cargando…

Enhancing Stereocomplexation Ability of Polylactide by Coalescing from Its Inclusion Complex with Urea

In this study, polylactide/urea complexes were successfully prepared by the electrospinning method, then the host urea component was removed to obtain a coalesced poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) blend. The crystallization behavior of the coalesced PLLA/PDLA blend (c-PLLA/PDLA) was stud...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ping, Chen, Xiao-Tong, Ye, Hai-Mu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418699/
https://www.ncbi.nlm.nih.gov/pubmed/30965892
http://dx.doi.org/10.3390/polym9110592
Descripción
Sumario:In this study, polylactide/urea complexes were successfully prepared by the electrospinning method, then the host urea component was removed to obtain a coalesced poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) blend. The crystallization behavior of the coalesced PLLA/PDLA blend (c-PLLA/PDLA) was studied by a differential scanning calorimeter (DSC) and Fourier transform infrared (FTIR) spectroscopy. The c-PLLA/PDLA was found to show better crystallization ability than normal PLLA/PDLA blend (r-PLLA/PDLA). More interestingly, the c-PLLA/PDLA effectively and solely crystallized into stereocomplex crystals during the non-isothermal melt-crystallization process, and the reason was attributed to the equally-distributing state of PLLA and PDLA chains in the PLLA/PDLA/urea complex, which led to good interconnection between PLLA and PDLA chains when the urea frameworks were instantly removed.