Cargando…

Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP) Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment

Basalt fiber-reinforced polymer (BFRP) composites are receiving increasing attention as they represent a low-cost green source of raw materials. FRP composites have to face harsh environments, such as chloride ions in coastal marine environments or cold regions with salt deicing. The resistance of F...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Zhongyu, Xie, Jianhe, Zhang, Huan, Li, Jianglin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418758/
https://www.ncbi.nlm.nih.gov/pubmed/30965953
http://dx.doi.org/10.3390/polym9120652
_version_ 1783403802610630656
author Lu, Zhongyu
Xie, Jianhe
Zhang, Huan
Li, Jianglin
author_facet Lu, Zhongyu
Xie, Jianhe
Zhang, Huan
Li, Jianglin
author_sort Lu, Zhongyu
collection PubMed
description Basalt fiber-reinforced polymer (BFRP) composites are receiving increasing attention as they represent a low-cost green source of raw materials. FRP composites have to face harsh environments, such as chloride ions in coastal marine environments or cold regions with salt deicing. The resistance of FRPs subjected to the above environments is critical for the safe design and application of BFRP composites. In the present paper, the long-term durability of BFRP sheets and the epoxy resin matrix in a wet–dry cyclic environment containing chloride ions was studied. The specimens of the BFRP sheet and epoxy resin matrix were exposed to alternative conditions of 8-h immersion in 3.5% NaCl solution at 40 °C and 16-h drying at 25 °C and 60% relative humidity (RH). The specimens were removed from the exposure chamber at the end of the 180th, 270th and 360th cycles of exposure and were analyzed for degradation with tensile tests, scanning electron microscopy (SEM) and void volume fractions. It was found that the tensile modulus of the BFRP sheet increased by 3.4%, and the tensile strength and ultimate strain decreased by 45% and 65%, respectively, after the 360th cycle of exposure. For the epoxy resin matrix, the tensile strength, tensile modulus and ultimate strain decreased by 27.8%, 3.2% and 64.8% after the 360th cycle of exposure, respectively. The results indicated that the degradation of the BFRP sheet was dominated by the damage of the interface between the basalt fiber and epoxy resin matrix. In addition, salt precipitate accelerated the fiber–matrix interfacial debonding, and hydrolysis of the epoxy resin matrix resulted in many voids, which accelerated the degradation of the BFRP sheet.
format Online
Article
Text
id pubmed-6418758
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64187582019-04-02 Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP) Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment Lu, Zhongyu Xie, Jianhe Zhang, Huan Li, Jianglin Polymers (Basel) Article Basalt fiber-reinforced polymer (BFRP) composites are receiving increasing attention as they represent a low-cost green source of raw materials. FRP composites have to face harsh environments, such as chloride ions in coastal marine environments or cold regions with salt deicing. The resistance of FRPs subjected to the above environments is critical for the safe design and application of BFRP composites. In the present paper, the long-term durability of BFRP sheets and the epoxy resin matrix in a wet–dry cyclic environment containing chloride ions was studied. The specimens of the BFRP sheet and epoxy resin matrix were exposed to alternative conditions of 8-h immersion in 3.5% NaCl solution at 40 °C and 16-h drying at 25 °C and 60% relative humidity (RH). The specimens were removed from the exposure chamber at the end of the 180th, 270th and 360th cycles of exposure and were analyzed for degradation with tensile tests, scanning electron microscopy (SEM) and void volume fractions. It was found that the tensile modulus of the BFRP sheet increased by 3.4%, and the tensile strength and ultimate strain decreased by 45% and 65%, respectively, after the 360th cycle of exposure. For the epoxy resin matrix, the tensile strength, tensile modulus and ultimate strain decreased by 27.8%, 3.2% and 64.8% after the 360th cycle of exposure, respectively. The results indicated that the degradation of the BFRP sheet was dominated by the damage of the interface between the basalt fiber and epoxy resin matrix. In addition, salt precipitate accelerated the fiber–matrix interfacial debonding, and hydrolysis of the epoxy resin matrix resulted in many voids, which accelerated the degradation of the BFRP sheet. MDPI 2017-11-28 /pmc/articles/PMC6418758/ /pubmed/30965953 http://dx.doi.org/10.3390/polym9120652 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lu, Zhongyu
Xie, Jianhe
Zhang, Huan
Li, Jianglin
Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP) Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment
title Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP) Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment
title_full Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP) Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment
title_fullStr Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP) Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment
title_full_unstemmed Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP) Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment
title_short Long-Term Durability of Basalt Fiber-Reinforced Polymer (BFRP) Sheets and the Epoxy Resin Matrix under a Wet–Dry Cyclic Condition in a Chloride-Containing Environment
title_sort long-term durability of basalt fiber-reinforced polymer (bfrp) sheets and the epoxy resin matrix under a wet–dry cyclic condition in a chloride-containing environment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418758/
https://www.ncbi.nlm.nih.gov/pubmed/30965953
http://dx.doi.org/10.3390/polym9120652
work_keys_str_mv AT luzhongyu longtermdurabilityofbasaltfiberreinforcedpolymerbfrpsheetsandtheepoxyresinmatrixunderawetdrycyclicconditioninachloridecontainingenvironment
AT xiejianhe longtermdurabilityofbasaltfiberreinforcedpolymerbfrpsheetsandtheepoxyresinmatrixunderawetdrycyclicconditioninachloridecontainingenvironment
AT zhanghuan longtermdurabilityofbasaltfiberreinforcedpolymerbfrpsheetsandtheepoxyresinmatrixunderawetdrycyclicconditioninachloridecontainingenvironment
AT lijianglin longtermdurabilityofbasaltfiberreinforcedpolymerbfrpsheetsandtheepoxyresinmatrixunderawetdrycyclicconditioninachloridecontainingenvironment