Cargando…

Transcriptome Profiling and Genome-Wide Association Studies Reveal GSTs and Other Defense Genes Involved in Multiple Signaling Pathways Induced by Herbicide Safener in Grain Sorghum

Herbicide safeners protect cereal crops from herbicide injury by inducing genes and proteins involved in detoxification reactions, such as glutathione S-transferases (GSTs) and cytochrome P450s (P450s). Only a few studies have characterized gene or protein expression profiles for investigating plant...

Descripción completa

Detalles Bibliográficos
Autores principales: Baek, You Soon, Goodrich, Loren V., Brown, Patrick J., James, Brandon T., Moose, Stephen P., Lambert, Kris N., Riechers, Dean E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418823/
https://www.ncbi.nlm.nih.gov/pubmed/30906302
http://dx.doi.org/10.3389/fpls.2019.00192
_version_ 1783403815705247744
author Baek, You Soon
Goodrich, Loren V.
Brown, Patrick J.
James, Brandon T.
Moose, Stephen P.
Lambert, Kris N.
Riechers, Dean E.
author_facet Baek, You Soon
Goodrich, Loren V.
Brown, Patrick J.
James, Brandon T.
Moose, Stephen P.
Lambert, Kris N.
Riechers, Dean E.
author_sort Baek, You Soon
collection PubMed
description Herbicide safeners protect cereal crops from herbicide injury by inducing genes and proteins involved in detoxification reactions, such as glutathione S-transferases (GSTs) and cytochrome P450s (P450s). Only a few studies have characterized gene or protein expression profiles for investigating plant responses to safener treatment in cereal crops, and most transcriptome analyses in response to safener treatments have been conducted in dicot model species that are not protected by safener from herbicide injury. In this study, three different approaches were utilized in grain sorghum (Sorghum bicolor (L.) Moench) to investigate mechanisms involved in safener-regulated signaling pathways. An initial transcriptome analysis was performed to examine global gene expression in etiolated shoot tissues of hybrid grain sorghum following treatment with the sorghum safener, fluxofenim. Most upregulated transcripts encoded detoxification enzymes, including P450s, GSTs, and UDP-dependent glucosyltransferases (UGTs). Interestingly, several of these upregulated transcripts are similar to genes involved with the biosynthesis and recycling/catabolism of dhurrin, an important chemical defense compound, in these seedling tissues. Secondly, 761 diverse sorghum inbred lines were evaluated in a genome-wide association study (GWAS) to determine key molecular-genetic factors governing safener-mediated signaling mechanisms and/or herbicide detoxification. GWAS revealed a significant single nucleotide polymorphism (SNP) associated with safener-induced response on chromosome 9, located within a phi-class SbGST gene and about 15-kb from a different phi-class SbGST. Lastly, the expression of these two candidate SbGSTs was quantified in etiolated shoot tissues of sorghum inbred BTx623 in response to fluxofenim treatment. SbGSTF1 and SbGSTF2 transcripts increased within 12-hr after fluxofenim treatment but the level of safener-induced expression differed between the two genes. In addition to identifying specific GSTs potentially involved in the safener-mediated detoxification pathway, this research elucidates a new direction for studying both constitutive and inducible mechanisms for chemical defense in cereal crop seedlings.
format Online
Article
Text
id pubmed-6418823
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-64188232019-03-22 Transcriptome Profiling and Genome-Wide Association Studies Reveal GSTs and Other Defense Genes Involved in Multiple Signaling Pathways Induced by Herbicide Safener in Grain Sorghum Baek, You Soon Goodrich, Loren V. Brown, Patrick J. James, Brandon T. Moose, Stephen P. Lambert, Kris N. Riechers, Dean E. Front Plant Sci Plant Science Herbicide safeners protect cereal crops from herbicide injury by inducing genes and proteins involved in detoxification reactions, such as glutathione S-transferases (GSTs) and cytochrome P450s (P450s). Only a few studies have characterized gene or protein expression profiles for investigating plant responses to safener treatment in cereal crops, and most transcriptome analyses in response to safener treatments have been conducted in dicot model species that are not protected by safener from herbicide injury. In this study, three different approaches were utilized in grain sorghum (Sorghum bicolor (L.) Moench) to investigate mechanisms involved in safener-regulated signaling pathways. An initial transcriptome analysis was performed to examine global gene expression in etiolated shoot tissues of hybrid grain sorghum following treatment with the sorghum safener, fluxofenim. Most upregulated transcripts encoded detoxification enzymes, including P450s, GSTs, and UDP-dependent glucosyltransferases (UGTs). Interestingly, several of these upregulated transcripts are similar to genes involved with the biosynthesis and recycling/catabolism of dhurrin, an important chemical defense compound, in these seedling tissues. Secondly, 761 diverse sorghum inbred lines were evaluated in a genome-wide association study (GWAS) to determine key molecular-genetic factors governing safener-mediated signaling mechanisms and/or herbicide detoxification. GWAS revealed a significant single nucleotide polymorphism (SNP) associated with safener-induced response on chromosome 9, located within a phi-class SbGST gene and about 15-kb from a different phi-class SbGST. Lastly, the expression of these two candidate SbGSTs was quantified in etiolated shoot tissues of sorghum inbred BTx623 in response to fluxofenim treatment. SbGSTF1 and SbGSTF2 transcripts increased within 12-hr after fluxofenim treatment but the level of safener-induced expression differed between the two genes. In addition to identifying specific GSTs potentially involved in the safener-mediated detoxification pathway, this research elucidates a new direction for studying both constitutive and inducible mechanisms for chemical defense in cereal crop seedlings. Frontiers Media S.A. 2019-03-08 /pmc/articles/PMC6418823/ /pubmed/30906302 http://dx.doi.org/10.3389/fpls.2019.00192 Text en Copyright © 2019 Baek, Goodrich, Brown, James, Moose, Lambert and Riechers. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Plant Science
Baek, You Soon
Goodrich, Loren V.
Brown, Patrick J.
James, Brandon T.
Moose, Stephen P.
Lambert, Kris N.
Riechers, Dean E.
Transcriptome Profiling and Genome-Wide Association Studies Reveal GSTs and Other Defense Genes Involved in Multiple Signaling Pathways Induced by Herbicide Safener in Grain Sorghum
title Transcriptome Profiling and Genome-Wide Association Studies Reveal GSTs and Other Defense Genes Involved in Multiple Signaling Pathways Induced by Herbicide Safener in Grain Sorghum
title_full Transcriptome Profiling and Genome-Wide Association Studies Reveal GSTs and Other Defense Genes Involved in Multiple Signaling Pathways Induced by Herbicide Safener in Grain Sorghum
title_fullStr Transcriptome Profiling and Genome-Wide Association Studies Reveal GSTs and Other Defense Genes Involved in Multiple Signaling Pathways Induced by Herbicide Safener in Grain Sorghum
title_full_unstemmed Transcriptome Profiling and Genome-Wide Association Studies Reveal GSTs and Other Defense Genes Involved in Multiple Signaling Pathways Induced by Herbicide Safener in Grain Sorghum
title_short Transcriptome Profiling and Genome-Wide Association Studies Reveal GSTs and Other Defense Genes Involved in Multiple Signaling Pathways Induced by Herbicide Safener in Grain Sorghum
title_sort transcriptome profiling and genome-wide association studies reveal gsts and other defense genes involved in multiple signaling pathways induced by herbicide safener in grain sorghum
topic Plant Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418823/
https://www.ncbi.nlm.nih.gov/pubmed/30906302
http://dx.doi.org/10.3389/fpls.2019.00192
work_keys_str_mv AT baekyousoon transcriptomeprofilingandgenomewideassociationstudiesrevealgstsandotherdefensegenesinvolvedinmultiplesignalingpathwaysinducedbyherbicidesafeneringrainsorghum
AT goodrichlorenv transcriptomeprofilingandgenomewideassociationstudiesrevealgstsandotherdefensegenesinvolvedinmultiplesignalingpathwaysinducedbyherbicidesafeneringrainsorghum
AT brownpatrickj transcriptomeprofilingandgenomewideassociationstudiesrevealgstsandotherdefensegenesinvolvedinmultiplesignalingpathwaysinducedbyherbicidesafeneringrainsorghum
AT jamesbrandont transcriptomeprofilingandgenomewideassociationstudiesrevealgstsandotherdefensegenesinvolvedinmultiplesignalingpathwaysinducedbyherbicidesafeneringrainsorghum
AT moosestephenp transcriptomeprofilingandgenomewideassociationstudiesrevealgstsandotherdefensegenesinvolvedinmultiplesignalingpathwaysinducedbyherbicidesafeneringrainsorghum
AT lambertkrisn transcriptomeprofilingandgenomewideassociationstudiesrevealgstsandotherdefensegenesinvolvedinmultiplesignalingpathwaysinducedbyherbicidesafeneringrainsorghum
AT riechersdeane transcriptomeprofilingandgenomewideassociationstudiesrevealgstsandotherdefensegenesinvolvedinmultiplesignalingpathwaysinducedbyherbicidesafeneringrainsorghum