Cargando…

Effect of the Addition of Carbon Nanomaterials on Electrical and Mechanical Properties of Wood Plastic Composites

Wood Plastic Composites (WPCs) are a new generation of green composites that could optimize the use of harvested trees and increase the entire value chain. In this study, the electrical and mechanical properties of WPCs containing carbon blacks (CB), flake graphite (FG) and carbon nanotubes (CNTs) h...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xingli, Hao, Xiaolong, Hao, Jianxiu, Wang, Qingwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418965/
https://www.ncbi.nlm.nih.gov/pubmed/30965926
http://dx.doi.org/10.3390/polym9110620
Descripción
Sumario:Wood Plastic Composites (WPCs) are a new generation of green composites that could optimize the use of harvested trees and increase the entire value chain. In this study, the electrical and mechanical properties of WPCs containing carbon blacks (CB), flake graphite (FG) and carbon nanotubes (CNTs) have been investigated. The electrical property of WPCs is improved significantly owing to the introduction of these carbon nanomaterial fillers. The volume and surface resistivity values of the investigated composites all obviously decreased with the increase in filler content, especially CNTs, which displayed the most satisfactory results. Based on a series of laboratory experiments carried out to investigate the mechanical performance, it can be concluded that the addition of the carbon nanomaterial fillers decreases the mechanical properties of WPCs slightly with the increase in filler content because of the weak interfacial interactions between the fillers and polymer matrix.