Cargando…
Electrospun Poly(γ–glutamic acid)/β–Tricalcium Phosphate Composite Fibrous Mats for Bone Regeneration
A poly(γ–glutamic acid)/β–tricalcium phosphate (γ–PGA/β–TCP) composite fibrous mat was fabricated using the electrospinning technique as a novel bone substitute. The mat was then cross-linked with cystamine in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide to improve its water-resist...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419030/ https://www.ncbi.nlm.nih.gov/pubmed/30960211 http://dx.doi.org/10.3390/polym11020227 |
Sumario: | A poly(γ–glutamic acid)/β–tricalcium phosphate (γ–PGA/β–TCP) composite fibrous mat was fabricated using the electrospinning technique as a novel bone substitute. The mat was then cross-linked with cystamine in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide to improve its water-resistant ability. Scanning electron micrographs revealed that the γ–PGA/β–TCP fibers had a uniform morphology with diameters ranging from 0.64 ± 0.07 µm to 1.65 ± 0.16 µm. The average diameter of the fibers increased with increasing cross-linking time. Moreover, increasing the cross-linking time and decreasing the γ–PGA/β–TCP weight ratio decreased the swelling ratio and in vitro degradation rate of the composite fibrous mat. In vitro experiments with osteoblast-like MG-63 cells demonstrated that the mat with a γ–PGA/β–TCP weight ratio of 20 and cross-linked time of 24 h had a higher alkaline phosphatase activity and better cell adhesion. Furthermore, the rat cranial bone defect was created and treated with the γ–PGA/β–TCP composite fibrous mat to evaluate its potential in bone regeneration. After 8 weeks of implantation, micro computed tomography showed that the γ–PGA/β–TCP composite fibrous mat promoted new bone growth. These observations suggest that the γ–PGA/β–TCP composite fibrous mat has a potential application in bone tissue engineering. |
---|