Cargando…

Silicone Implant Coated with Tranilast-Loaded Polymer in a Pattern for Fibrosis Suppression

Pathologic fibrosis around silicone implants is problematic, and thus, these implants have been coated with a mixture of a biocompatible polymer and antifibrotic drug for sustained drug release to prevent fibrosis. However, a coating applied over an entire surface would be subject to mechanical inst...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Byung Hwi, Huh, Beom Kang, Lee, Won Suk, Kim, Cho Rim, Lee, Kyu Sang, Nam, Sun-Young, Lee, Miji, Heo, Chan Yeong, Choy, Young Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419080/
https://www.ncbi.nlm.nih.gov/pubmed/30960207
http://dx.doi.org/10.3390/polym11020223
Descripción
Sumario:Pathologic fibrosis around silicone implants is problematic, and thus, these implants have been coated with a mixture of a biocompatible polymer and antifibrotic drug for sustained drug release to prevent fibrosis. However, a coating applied over an entire surface would be subject to mechanical instability as the implant would be severely crumpled for implant insertion. Therefore, in this work, we proposed localized, patterned coating dots, each composed of poly(lactic-co-glycolic acid) (PLGA) and tranilast, to be applied on the surface of silicone implants. The drug loaded in the pattern-coated implant herein was well retained after a cyclic tensile test. Due to the presence of PLGA in each coating dot, the tranilast could be released in a sustained manner for more than 14 days. When implanted in a subcutaneous pocket in living rats for 12 weeks, compared with the intact implant, the pattern-coated implant showed a decreased capsule thickness and collagen density, as well as less transforming growth factor-β (TGF-β) expression and fewer fibroblasts; importantly, these changes were similar between the surfaces with and without the coating dots. Therefore, we conclude that the pattern-coating strategy proposed in this study can still effectively prevent fibrosis by maintaining the physical stability of the coatings.