Cargando…

Lightweight High-Performance Polymer Composite for Automotive Applications

The automotive industry needs to produce plastic products with high dimensional accuracy and reduced weight, and this need drives the research toward less conventional industrial processes. The material that was adopted in this work is a glass-fiber-reinforced polyamide 66 (PA66), a material of grea...

Descripción completa

Detalles Bibliográficos
Autores principales: Volpe, Valentina, Lanzillo, Sofia, Affinita, Giovanni, Villacci, Beniamino, Macchiarolo, Innocenzo, Pantani, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419205/
https://www.ncbi.nlm.nih.gov/pubmed/30960310
http://dx.doi.org/10.3390/polym11020326
Descripción
Sumario:The automotive industry needs to produce plastic products with high dimensional accuracy and reduced weight, and this need drives the research toward less conventional industrial processes. The material that was adopted in this work is a glass-fiber-reinforced polyamide 66 (PA66), a material of great interest for the automotive industry because of its excellent properties, although being limited in application because of its relatively high cost. In order to reduce the cost of the produced parts, still preserving the main properties of the material, the possibility of applying microcellular injection molding process was explored in this work. In particular, the influence of the main processing parameters on morphology and performance of PA66 + 30% glass-fiber foamed parts was investigated. An analysis of variance (ANOVA) was employed to identify the significant factors that influence the morphology of the molded parts. According to ANOVA results, in order to obtain homogeneous foamed parts with good mechanical properties, an injection temperature of 300 °C, a high gas injection pressure, and a large thickness of the parts should be adopted.