Cargando…

Maternal diet deficient in riboflavin induces embryonic death associated with alterations in the hepatic proteome of duck embryos

BACKGROUND: Maternal riboflavin deficiency (RD) induces embryonic death in poultry. The underlying mechanisms, however, remain to be established and an overview of molecular alterations at the protein level is still lacking. We investigated embryonic hepatic proteome changes induced by maternal RD t...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Jing, Hu, Jian, Xue, Ming, Guo, Zhanbao, Xie, Ming, Zhang, Bo, Zhou, Zhengkui, Huang, Wei, Hou, Shuisheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419344/
https://www.ncbi.nlm.nih.gov/pubmed/30918526
http://dx.doi.org/10.1186/s12986-019-0345-8
_version_ 1783403923267125248
author Tang, Jing
Hu, Jian
Xue, Ming
Guo, Zhanbao
Xie, Ming
Zhang, Bo
Zhou, Zhengkui
Huang, Wei
Hou, Shuisheng
author_facet Tang, Jing
Hu, Jian
Xue, Ming
Guo, Zhanbao
Xie, Ming
Zhang, Bo
Zhou, Zhengkui
Huang, Wei
Hou, Shuisheng
author_sort Tang, Jing
collection PubMed
description BACKGROUND: Maternal riboflavin deficiency (RD) induces embryonic death in poultry. The underlying mechanisms, however, remain to be established and an overview of molecular alterations at the protein level is still lacking. We investigated embryonic hepatic proteome changes induced by maternal RD to explain embryonic death. METHODS: A total of 80 45-week-old breeding female ducks were divided into two groups of 40 birds each, and all birds were raised individually for 8 weeks. All the female ducks received either a RD or a riboflavin adequate (control, CON) diet, which supplemented the basal diet with 0 or 10 mg riboflavin /kg of diet respectively. RESULTS: The riboflavin concentrations of maternal plasma and egg yolk, as well as egg hatchability declined markedly in the RD group compared to those in the CON group after 2 weeks, and declined further over time. The hepatic proteome of E13 viable embryos from 8-week fertile eggs showed that 223 proteins were upregulated and 366 proteins were downregulated (> 1.5-fold change) in the RD group compared to those in the CON group. Pathway analysis showed that differentially expressed proteins were mainly enriched in the fatty acid beta-oxidation, electron transport chain (ETC), and tricarboxylic acid (TCA) cycle. Specifically, all the proteins involved in the fatty acid beta-oxidation and ETC, as well as six out of seven proteins involved in the TCA cycle, were diminished in the RD group, indicating that these processes could be impaired by RD. CONCLUSION: Maternal RD leads to embryonic death of offspring and is associated with impaired energy generation processes, indicated by a number of downregulated proteins involved in the fatty acid beta-oxidation, ETC, and TCA cycle in the hepatic of duck embryos. These findings contribute to our understanding of the mechanisms of liver metabolic disorders due to maternal RD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12986-019-0345-8) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6419344
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-64193442019-03-27 Maternal diet deficient in riboflavin induces embryonic death associated with alterations in the hepatic proteome of duck embryos Tang, Jing Hu, Jian Xue, Ming Guo, Zhanbao Xie, Ming Zhang, Bo Zhou, Zhengkui Huang, Wei Hou, Shuisheng Nutr Metab (Lond) Research BACKGROUND: Maternal riboflavin deficiency (RD) induces embryonic death in poultry. The underlying mechanisms, however, remain to be established and an overview of molecular alterations at the protein level is still lacking. We investigated embryonic hepatic proteome changes induced by maternal RD to explain embryonic death. METHODS: A total of 80 45-week-old breeding female ducks were divided into two groups of 40 birds each, and all birds were raised individually for 8 weeks. All the female ducks received either a RD or a riboflavin adequate (control, CON) diet, which supplemented the basal diet with 0 or 10 mg riboflavin /kg of diet respectively. RESULTS: The riboflavin concentrations of maternal plasma and egg yolk, as well as egg hatchability declined markedly in the RD group compared to those in the CON group after 2 weeks, and declined further over time. The hepatic proteome of E13 viable embryos from 8-week fertile eggs showed that 223 proteins were upregulated and 366 proteins were downregulated (> 1.5-fold change) in the RD group compared to those in the CON group. Pathway analysis showed that differentially expressed proteins were mainly enriched in the fatty acid beta-oxidation, electron transport chain (ETC), and tricarboxylic acid (TCA) cycle. Specifically, all the proteins involved in the fatty acid beta-oxidation and ETC, as well as six out of seven proteins involved in the TCA cycle, were diminished in the RD group, indicating that these processes could be impaired by RD. CONCLUSION: Maternal RD leads to embryonic death of offspring and is associated with impaired energy generation processes, indicated by a number of downregulated proteins involved in the fatty acid beta-oxidation, ETC, and TCA cycle in the hepatic of duck embryos. These findings contribute to our understanding of the mechanisms of liver metabolic disorders due to maternal RD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12986-019-0345-8) contains supplementary material, which is available to authorized users. BioMed Central 2019-03-14 /pmc/articles/PMC6419344/ /pubmed/30918526 http://dx.doi.org/10.1186/s12986-019-0345-8 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Tang, Jing
Hu, Jian
Xue, Ming
Guo, Zhanbao
Xie, Ming
Zhang, Bo
Zhou, Zhengkui
Huang, Wei
Hou, Shuisheng
Maternal diet deficient in riboflavin induces embryonic death associated with alterations in the hepatic proteome of duck embryos
title Maternal diet deficient in riboflavin induces embryonic death associated with alterations in the hepatic proteome of duck embryos
title_full Maternal diet deficient in riboflavin induces embryonic death associated with alterations in the hepatic proteome of duck embryos
title_fullStr Maternal diet deficient in riboflavin induces embryonic death associated with alterations in the hepatic proteome of duck embryos
title_full_unstemmed Maternal diet deficient in riboflavin induces embryonic death associated with alterations in the hepatic proteome of duck embryos
title_short Maternal diet deficient in riboflavin induces embryonic death associated with alterations in the hepatic proteome of duck embryos
title_sort maternal diet deficient in riboflavin induces embryonic death associated with alterations in the hepatic proteome of duck embryos
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419344/
https://www.ncbi.nlm.nih.gov/pubmed/30918526
http://dx.doi.org/10.1186/s12986-019-0345-8
work_keys_str_mv AT tangjing maternaldietdeficientinriboflavininducesembryonicdeathassociatedwithalterationsinthehepaticproteomeofduckembryos
AT hujian maternaldietdeficientinriboflavininducesembryonicdeathassociatedwithalterationsinthehepaticproteomeofduckembryos
AT xueming maternaldietdeficientinriboflavininducesembryonicdeathassociatedwithalterationsinthehepaticproteomeofduckembryos
AT guozhanbao maternaldietdeficientinriboflavininducesembryonicdeathassociatedwithalterationsinthehepaticproteomeofduckembryos
AT xieming maternaldietdeficientinriboflavininducesembryonicdeathassociatedwithalterationsinthehepaticproteomeofduckembryos
AT zhangbo maternaldietdeficientinriboflavininducesembryonicdeathassociatedwithalterationsinthehepaticproteomeofduckembryos
AT zhouzhengkui maternaldietdeficientinriboflavininducesembryonicdeathassociatedwithalterationsinthehepaticproteomeofduckembryos
AT huangwei maternaldietdeficientinriboflavininducesembryonicdeathassociatedwithalterationsinthehepaticproteomeofduckembryos
AT houshuisheng maternaldietdeficientinriboflavininducesembryonicdeathassociatedwithalterationsinthehepaticproteomeofduckembryos