Cargando…
A Bayesian hierarchical logistic regression model of multiple informant family health histories
BACKGROUND: Family health history (FHH) inherently involves collecting proxy reports of health statuses of related family members. Traditionally, such information has been collected from a single informant. More recently, research has suggested that a multiple informant approach to collecting FHH re...
Autores principales: | Lin, Jielu, Myers, Melanie F., Koehly, Laura M., Marcum, Christopher Steven |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419428/ https://www.ncbi.nlm.nih.gov/pubmed/30871571 http://dx.doi.org/10.1186/s12874-019-0700-5 |
Ejemplares similares
-
High performance logistic regression for privacy-preserving genome analysis
por: De Cock, Martine, et al.
Publicado: (2021) -
Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis
por: Eekhout, Iris, et al.
Publicado: (2017) -
Don’t dismiss logistic regression: the case for sensible extraction of interactions in the era of machine learning
por: Levy, Joshua J., et al.
Publicado: (2020) -
Clinical analysis of germline copy number variation in DMD using a non-conjugate hierarchical Bayesian model
por: Kozareva, Velina, et al.
Publicado: (2018) -
AGE DIFFERENCES IN COGNITIVE PERSONAL NETWORKS
por: Marcum, Christopher S, et al.
Publicado: (2019)