Cargando…
SALMON: Survival Analysis Learning With Multi-Omics Neural Networks on Breast Cancer
Improved cancer prognosis is a central goal for precision health medicine. Though many models can predict differential survival from data, there is a strong need for sophisticated algorithms that can aggregate and filter relevant predictors from increasingly complex data inputs. In turn, these model...
Autores principales: | Huang, Zhi, Zhan, Xiaohui, Xiang, Shunian, Johnson, Travis S., Helm, Bryan, Yu, Christina Y., Zhang, Jie, Salama, Paul, Rizkalla, Maher, Han, Zhi, Huang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419526/ https://www.ncbi.nlm.nih.gov/pubmed/30906311 http://dx.doi.org/10.3389/fgene.2019.00166 |
Ejemplares similares
-
Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations
por: Huang, Zhi, et al.
Publicado: (2020) -
Gene Co-expression Network and Copy Number Variation Analyses Identify Transcription Factors Associated With Multiple Myeloma Progression
por: Yu, Christina Y., et al.
Publicado: (2019) -
TSUNAMI: Translational Bioinformatics Tool Suite for Network Analysis and Mining
por: Huang, Zhi, et al.
Publicado: (2021) -
Molecular Subtyping of Cancer Based on Robust Graph Neural Network and Multi-Omics Data Integration
por: Yin, Chaoyi, et al.
Publicado: (2022) -
More Is Better: Recent Progress in Multi-Omics Data Integration Methods
por: Huang, Sijia, et al.
Publicado: (2017)