Cargando…

FitEllipsoid: a fast supervised ellipsoid segmentation plugin

BACKGROUND: The segmentation of a 3D image is a task that can hardly be automatized in certain situations, notably when the contrast is low and/or the distance between elements is small. The existing supervised methods require a high amount of user input, e.g. delineating the domain in all planar se...

Descripción completa

Detalles Bibliográficos
Autores principales: Kovac, Bastien, Fehrenbach, Jérôme, Guillaume, Ludivine, Weiss, Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419800/
https://www.ncbi.nlm.nih.gov/pubmed/30876406
http://dx.doi.org/10.1186/s12859-019-2673-0
Descripción
Sumario:BACKGROUND: The segmentation of a 3D image is a task that can hardly be automatized in certain situations, notably when the contrast is low and/or the distance between elements is small. The existing supervised methods require a high amount of user input, e.g. delineating the domain in all planar sections. RESULTS: We present FitEllipsoid, a supervised segmentation code that allows fitting ellipsoids to 3D images with a minimal amount of interactions: the user clicks on a few points on the boundary of the object on 3 orthogonal views. The quantitative geometric results of the segmentation of ellipsoids can be exported as a csv file or as a binary image. The core of the code is based on an original computational approach to fit ellipsoids to point clouds in an affine invariant manner. The plugin is validated by segmenting a large number of 3D nuclei in tumor spheroids, allowing to analyze the distribution of their shapes. User experiments show that large collections of nuclei can be segmented with a high accuracy much faster than with more traditional 2D slice by slice delineation approaches. CONCLUSIONS: We designed a user-friendly software FitEllipsoid allowing to segment hundreds of ellipsoidal shapes in a supervised manner. It may be used directly to analyze biological samples, or to generate segmentation databases necessary to train learning algorithms. The algorithm is distributed as an open-source plugin to be used within the image analysis software Icy. We also provide a Matlab toolbox available with GitHub. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-019-2673-0) contains supplementary material, which is available to authorized users.