Cargando…
Exploring the GDB-13 chemical space using deep generative models
Recent applications of recurrent neural networks (RNN) enable training models that sample the chemical space. In this study we train RNN with molecular string representations (SMILES) with a subset of the enumerated database GDB-13 (975 million molecules). We show that a model trained with 1 million...
Autores principales: | Arús-Pous, Josep, Blaschke, Thomas, Ulander, Silas, Reymond, Jean-Louis, Chen, Hongming, Engkvist, Ola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419837/ https://www.ncbi.nlm.nih.gov/pubmed/30868314 http://dx.doi.org/10.1186/s13321-019-0341-z |
Ejemplares similares
-
Expanding Bioactive
Fragment Space with the Generated
Database GDB-13s
por: Buehler, Ye, et al.
Publicado: (2023) -
SMILES-based deep generative scaffold decorator for de-novo drug design
por: Arús-Pous, Josep, et al.
Publicado: (2020) -
Randomized SMILES strings improve the quality of molecular generative models
por: Arús-Pous, Josep, et al.
Publicado: (2019) -
A de novo molecular generation method using latent vector based generative adversarial network
por: Prykhodko, Oleksii, et al.
Publicado: (2019) -
Applications of Deep-Learning in Exploiting Large-Scale and Heterogeneous Compound Data in Industrial Pharmaceutical Research
por: David, Laurianne, et al.
Publicado: (2019)