Cargando…
MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples
Autores principales: | Asgari, Ehsaneddin, Garakani, Kiavash, McHardy, Alice C, Mofrad, Mohammad R K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419898/ https://www.ncbi.nlm.nih.gov/pubmed/30099528 http://dx.doi.org/10.1093/bioinformatics/bty652 |
Ejemplares similares
-
MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples
por: Asgari, Ehsaneddin, et al.
Publicado: (2018) -
Probabilistic variable-length segmentation of protein sequences for discriminative motif discovery (DiMotif) and sequence embedding (ProtVecX)
por: Asgari, Ehsaneddin, et al.
Publicado: (2019) -
GO Bench: shared hub for universal benchmarking of machine learning-based protein functional annotations
por: Dickson, Andrew, et al.
Publicado: (2023) -
Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics
por: Asgari, Ehsaneddin, et al.
Publicado: (2015) -
EpitopeVec: linear epitope prediction using deep protein sequence embeddings
por: Bahai, Akash, et al.
Publicado: (2021)