Cargando…

Composite lithium electrode with mesoscale skeleton via simple mechanical deformation

Lithium metal–based batteries are attractive energy storage devices because of high energy density. However, uncontrolled dendrite growth and virtually infinite volume change, which cause performance fading and safety concerns, have limited their applications. Here, we demonstrate that a composite l...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Zheng, Yan, Kai, Zhou, Guangmin, Pei, Allen, Zhao, Jie, Sun, Yongming, Xie, Jin, Li, Yanbin, Shi, Feifei, Liu, Yayuan, Lin, Dingchang, Liu, Kai, Wang, Hansen, Wang, Hongxia, Lu, Yingying, Cui, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420310/
https://www.ncbi.nlm.nih.gov/pubmed/30899782
http://dx.doi.org/10.1126/sciadv.aau5655
_version_ 1783404068292526080
author Liang, Zheng
Yan, Kai
Zhou, Guangmin
Pei, Allen
Zhao, Jie
Sun, Yongming
Xie, Jin
Li, Yanbin
Shi, Feifei
Liu, Yayuan
Lin, Dingchang
Liu, Kai
Wang, Hansen
Wang, Hongxia
Lu, Yingying
Cui, Yi
author_facet Liang, Zheng
Yan, Kai
Zhou, Guangmin
Pei, Allen
Zhao, Jie
Sun, Yongming
Xie, Jin
Li, Yanbin
Shi, Feifei
Liu, Yayuan
Lin, Dingchang
Liu, Kai
Wang, Hansen
Wang, Hongxia
Lu, Yingying
Cui, Yi
author_sort Liang, Zheng
collection PubMed
description Lithium metal–based batteries are attractive energy storage devices because of high energy density. However, uncontrolled dendrite growth and virtually infinite volume change, which cause performance fading and safety concerns, have limited their applications. Here, we demonstrate that a composite lithium metal electrode with an ion-conducting mesoscale skeleton can improve electrochemical performance by locally reducing the current density. In addition, the potential for short-circuiting is largely alleviated due to side deposition of mossy lithium on the three-dimensional electroactive surface of the composite electrode. Moreover, the electrode volume only slightly changes with the support of a rigid and stable scaffold. Therefore, this mesoscale composite electrode can cycle stably for 200 cycles with low polarization under a high areal current density up to 5 mA/cm(2). Most attractively, the proposed fabrication process, which only involves simple mechanical deformation, is scalable and cost effective, providing a new strategy for developing high performance and long lifespan lithium anodes.
format Online
Article
Text
id pubmed-6420310
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-64203102019-03-21 Composite lithium electrode with mesoscale skeleton via simple mechanical deformation Liang, Zheng Yan, Kai Zhou, Guangmin Pei, Allen Zhao, Jie Sun, Yongming Xie, Jin Li, Yanbin Shi, Feifei Liu, Yayuan Lin, Dingchang Liu, Kai Wang, Hansen Wang, Hongxia Lu, Yingying Cui, Yi Sci Adv Research Articles Lithium metal–based batteries are attractive energy storage devices because of high energy density. However, uncontrolled dendrite growth and virtually infinite volume change, which cause performance fading and safety concerns, have limited their applications. Here, we demonstrate that a composite lithium metal electrode with an ion-conducting mesoscale skeleton can improve electrochemical performance by locally reducing the current density. In addition, the potential for short-circuiting is largely alleviated due to side deposition of mossy lithium on the three-dimensional electroactive surface of the composite electrode. Moreover, the electrode volume only slightly changes with the support of a rigid and stable scaffold. Therefore, this mesoscale composite electrode can cycle stably for 200 cycles with low polarization under a high areal current density up to 5 mA/cm(2). Most attractively, the proposed fabrication process, which only involves simple mechanical deformation, is scalable and cost effective, providing a new strategy for developing high performance and long lifespan lithium anodes. American Association for the Advancement of Science 2019-03-15 /pmc/articles/PMC6420310/ /pubmed/30899782 http://dx.doi.org/10.1126/sciadv.aau5655 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Liang, Zheng
Yan, Kai
Zhou, Guangmin
Pei, Allen
Zhao, Jie
Sun, Yongming
Xie, Jin
Li, Yanbin
Shi, Feifei
Liu, Yayuan
Lin, Dingchang
Liu, Kai
Wang, Hansen
Wang, Hongxia
Lu, Yingying
Cui, Yi
Composite lithium electrode with mesoscale skeleton via simple mechanical deformation
title Composite lithium electrode with mesoscale skeleton via simple mechanical deformation
title_full Composite lithium electrode with mesoscale skeleton via simple mechanical deformation
title_fullStr Composite lithium electrode with mesoscale skeleton via simple mechanical deformation
title_full_unstemmed Composite lithium electrode with mesoscale skeleton via simple mechanical deformation
title_short Composite lithium electrode with mesoscale skeleton via simple mechanical deformation
title_sort composite lithium electrode with mesoscale skeleton via simple mechanical deformation
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420310/
https://www.ncbi.nlm.nih.gov/pubmed/30899782
http://dx.doi.org/10.1126/sciadv.aau5655
work_keys_str_mv AT liangzheng compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT yankai compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT zhouguangmin compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT peiallen compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT zhaojie compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT sunyongming compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT xiejin compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT liyanbin compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT shifeifei compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT liuyayuan compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT lindingchang compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT liukai compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT wanghansen compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT wanghongxia compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT luyingying compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation
AT cuiyi compositelithiumelectrodewithmesoscaleskeletonviasimplemechanicaldeformation