Cargando…
Revisiting foraging approaches in neuroscience
Many complex real-world decisions, such as deciding which house to buy or whether to switch jobs, involve trying to maximize reward across a sequence of choices. Optimal Foraging Theory is well suited to study these kinds of choices because it provides formal models for reward-maximization in sequen...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420423/ https://www.ncbi.nlm.nih.gov/pubmed/30607832 http://dx.doi.org/10.3758/s13415-018-00682-z |
_version_ | 1783404079379120128 |
---|---|
author | Hall-McMaster, Sam Luyckx, Fabrice |
author_facet | Hall-McMaster, Sam Luyckx, Fabrice |
author_sort | Hall-McMaster, Sam |
collection | PubMed |
description | Many complex real-world decisions, such as deciding which house to buy or whether to switch jobs, involve trying to maximize reward across a sequence of choices. Optimal Foraging Theory is well suited to study these kinds of choices because it provides formal models for reward-maximization in sequential situations. In this article, we review recent insights from foraging neuroscience, behavioral ecology, and computational modelling. We find that a commonly used approach in foraging neuroscience, in which choice items are encountered at random, does not reflect the way animals direct their foraging efforts in certain real-world settings, nor does it reflect efficient reward-maximizing behavior. Based on this, we propose that task designs allowing subjects to encounter choice items strategically will further improve the ecological validity of foraging approaches used in neuroscience, as well as give rise to new behavioral and neural predictions that deepen our understanding of sequential, value-based choice. |
format | Online Article Text |
id | pubmed-6420423 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-64204232019-04-03 Revisiting foraging approaches in neuroscience Hall-McMaster, Sam Luyckx, Fabrice Cogn Affect Behav Neurosci Theoretical Review Many complex real-world decisions, such as deciding which house to buy or whether to switch jobs, involve trying to maximize reward across a sequence of choices. Optimal Foraging Theory is well suited to study these kinds of choices because it provides formal models for reward-maximization in sequential situations. In this article, we review recent insights from foraging neuroscience, behavioral ecology, and computational modelling. We find that a commonly used approach in foraging neuroscience, in which choice items are encountered at random, does not reflect the way animals direct their foraging efforts in certain real-world settings, nor does it reflect efficient reward-maximizing behavior. Based on this, we propose that task designs allowing subjects to encounter choice items strategically will further improve the ecological validity of foraging approaches used in neuroscience, as well as give rise to new behavioral and neural predictions that deepen our understanding of sequential, value-based choice. Springer US 2019-01-03 2019 /pmc/articles/PMC6420423/ /pubmed/30607832 http://dx.doi.org/10.3758/s13415-018-00682-z Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Theoretical Review Hall-McMaster, Sam Luyckx, Fabrice Revisiting foraging approaches in neuroscience |
title | Revisiting foraging approaches in neuroscience |
title_full | Revisiting foraging approaches in neuroscience |
title_fullStr | Revisiting foraging approaches in neuroscience |
title_full_unstemmed | Revisiting foraging approaches in neuroscience |
title_short | Revisiting foraging approaches in neuroscience |
title_sort | revisiting foraging approaches in neuroscience |
topic | Theoretical Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420423/ https://www.ncbi.nlm.nih.gov/pubmed/30607832 http://dx.doi.org/10.3758/s13415-018-00682-z |
work_keys_str_mv | AT hallmcmastersam revisitingforagingapproachesinneuroscience AT luyckxfabrice revisitingforagingapproachesinneuroscience |