Cargando…
Bayesian evaluation of informative hypotheses in cluster-randomized trials
Researchers often have informative hypotheses in mind when comparing means across treatment groups, such as H(1) : μ(A) < μ(B) < μ(C) and H(2) : μ(B) < μ(A) < μ(C), and want to compare these hypotheses to each other directly. This can be done by means of Bayesian inference. This article...
Autor principal: | Moerbeek, Mirjam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420439/ https://www.ncbi.nlm.nih.gov/pubmed/30350025 http://dx.doi.org/10.3758/s13428-018-1149-x |
Ejemplares similares
-
Sample size determination for Bayesian ANOVAs with informative hypotheses
por: Fu, Qianrao, et al.
Publicado: (2022) -
Bayesian evaluation of informative hypotheses
por: Hoijtink, Herbert, et al.
Publicado: (2008) -
Illustrating Bayesian Evaluation of Informative Hypotheses for Regression Models
por: Kluytmans, Anouck, et al.
Publicado: (2012) -
The cluster randomized crossover trial: The effects of attrition in the AB/BA design and how to account for it in sample size calculations
por: Moerbeek, Mirjam
Publicado: (2020) -
The effect of missing data on design efficiency in repeated cross-sectional multi-period two-arm parallel cluster randomized trials
por: Moerbeek, Mirjam
Publicado: (2021)