Cargando…
Chronic low dose arsenic exposure preferentially perturbs mitotic phase of the cell cycle
Environmental pollution is a big challenge for human survival. Arsenic compounds are well-known biohazard, the exposure of which is closely linked to onsets of various human diseases, particularly cancers. Upon chronically exposing to arsenic compounds, genomic integrity is often disrupted, leading...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420791/ https://www.ncbi.nlm.nih.gov/pubmed/30899418 http://dx.doi.org/10.18632/genesandcancer.185 |
_version_ | 1783404140581355520 |
---|---|
author | Ganapathy, Suthakar Liu, Jian Xiong, Rui Yu, Tianqi Makriyannis, Alexandros Chen, Changyan |
author_facet | Ganapathy, Suthakar Liu, Jian Xiong, Rui Yu, Tianqi Makriyannis, Alexandros Chen, Changyan |
author_sort | Ganapathy, Suthakar |
collection | PubMed |
description | Environmental pollution is a big challenge for human survival. Arsenic compounds are well-known biohazard, the exposure of which is closely linked to onsets of various human diseases, particularly cancers. Upon chronically exposing to arsenic compounds, genomic integrity is often disrupted, leading to tumor development. However, the underlying mechanisms by which chronic, low dose arsenic exposure targets genetic stability to initiate carcinogenesis still remain not fully understood. In this study, human lung epithelial BEAS-2B cells and keratinocytes were treated with 0.5 μM of sodium arsenite for one month (designated as BEAS-2B-SA cells or keratinocytes-SA), and its effect on cell cycle responses was analyzed. After being arrested in mitotic phase of the cell cycle by nocodazole treatment, BEAS-2B-SA cells or keratinocytes-SA were delayed to enter next cytokinesis. The lagging exit of the cells from mitosis was accompanied by a sustained Plk1 phosphorylation, which led to a persistent activation of the mitotic regulators BubR1 and Cdc27. As the result, cyclin B1 (clnB1) degradation was attenuated. BEAS-2B-SA cells or keratinocytes-SA also expressed a constitutively active Akt. The cytogenetic analysis showed an increased numbers of aneuploidy in these cells. The suppression of Akt reversed the aberrant expressions of the mitotic regulators, delay of mitotic exit as well as chromosomal aberrations. Our findings suggest that a long-term exposure to low dose sodium arsenite aberrantly retains the catenation of mitosis, which facilitates establishing genetic instability and predisposes the cells to tumorigenesis. |
format | Online Article Text |
id | pubmed-6420791 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-64207912019-03-21 Chronic low dose arsenic exposure preferentially perturbs mitotic phase of the cell cycle Ganapathy, Suthakar Liu, Jian Xiong, Rui Yu, Tianqi Makriyannis, Alexandros Chen, Changyan Genes Cancer Research Paper Environmental pollution is a big challenge for human survival. Arsenic compounds are well-known biohazard, the exposure of which is closely linked to onsets of various human diseases, particularly cancers. Upon chronically exposing to arsenic compounds, genomic integrity is often disrupted, leading to tumor development. However, the underlying mechanisms by which chronic, low dose arsenic exposure targets genetic stability to initiate carcinogenesis still remain not fully understood. In this study, human lung epithelial BEAS-2B cells and keratinocytes were treated with 0.5 μM of sodium arsenite for one month (designated as BEAS-2B-SA cells or keratinocytes-SA), and its effect on cell cycle responses was analyzed. After being arrested in mitotic phase of the cell cycle by nocodazole treatment, BEAS-2B-SA cells or keratinocytes-SA were delayed to enter next cytokinesis. The lagging exit of the cells from mitosis was accompanied by a sustained Plk1 phosphorylation, which led to a persistent activation of the mitotic regulators BubR1 and Cdc27. As the result, cyclin B1 (clnB1) degradation was attenuated. BEAS-2B-SA cells or keratinocytes-SA also expressed a constitutively active Akt. The cytogenetic analysis showed an increased numbers of aneuploidy in these cells. The suppression of Akt reversed the aberrant expressions of the mitotic regulators, delay of mitotic exit as well as chromosomal aberrations. Our findings suggest that a long-term exposure to low dose sodium arsenite aberrantly retains the catenation of mitosis, which facilitates establishing genetic instability and predisposes the cells to tumorigenesis. Impact Journals LLC 2019-02 /pmc/articles/PMC6420791/ /pubmed/30899418 http://dx.doi.org/10.18632/genesandcancer.185 Text en Copyright: © 2019 Ganapathy et al. http://creativecommons.org/licenses/by/3.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/) (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Research Paper Ganapathy, Suthakar Liu, Jian Xiong, Rui Yu, Tianqi Makriyannis, Alexandros Chen, Changyan Chronic low dose arsenic exposure preferentially perturbs mitotic phase of the cell cycle |
title | Chronic low dose arsenic exposure preferentially perturbs mitotic phase of the cell cycle |
title_full | Chronic low dose arsenic exposure preferentially perturbs mitotic phase of the cell cycle |
title_fullStr | Chronic low dose arsenic exposure preferentially perturbs mitotic phase of the cell cycle |
title_full_unstemmed | Chronic low dose arsenic exposure preferentially perturbs mitotic phase of the cell cycle |
title_short | Chronic low dose arsenic exposure preferentially perturbs mitotic phase of the cell cycle |
title_sort | chronic low dose arsenic exposure preferentially perturbs mitotic phase of the cell cycle |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420791/ https://www.ncbi.nlm.nih.gov/pubmed/30899418 http://dx.doi.org/10.18632/genesandcancer.185 |
work_keys_str_mv | AT ganapathysuthakar chroniclowdosearsenicexposurepreferentiallyperturbsmitoticphaseofthecellcycle AT liujian chroniclowdosearsenicexposurepreferentiallyperturbsmitoticphaseofthecellcycle AT xiongrui chroniclowdosearsenicexposurepreferentiallyperturbsmitoticphaseofthecellcycle AT yutianqi chroniclowdosearsenicexposurepreferentiallyperturbsmitoticphaseofthecellcycle AT makriyannisalexandros chroniclowdosearsenicexposurepreferentiallyperturbsmitoticphaseofthecellcycle AT chenchangyan chroniclowdosearsenicexposurepreferentiallyperturbsmitoticphaseofthecellcycle |