Cargando…
Early esophageal adenocarcinoma detection using deep learning methods
PURPOSE: This study aims to adapt and evaluate the performance of different state-of-the-art deep learning object detection methods to automatically identify esophageal adenocarcinoma (EAC) regions from high-definition white light endoscopy (HD-WLE) images. METHOD: Several state-of-the-art object de...
Autores principales: | Ghatwary, Noha, Zolgharni, Massoud, Ye, Xujiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6420905/ https://www.ncbi.nlm.nih.gov/pubmed/30666547 http://dx.doi.org/10.1007/s11548-019-01914-4 |
Ejemplares similares
-
An optimisation-based iterative approach for speckle tracking echocardiography
por: Azarmehr, Neda, et al.
Publicado: (2020) -
Epidemiology of early esophageal adenocarcinoma
por: Hang, Thuy-Van P., et al.
Publicado: (2022) -
Esophageal adenocarcinoma: Methods and protocols
por: Samarasam, Inian
Publicado: (2019) -
Evaluation of deep learning methods for early gastric cancer detection using gastroscopic images
por: Su, Xiufeng, et al.
Publicado: (2023) -
Detection of Incidental Esophageal Cancers on Chest CT by Deep Learning
por: Sui, He, et al.
Publicado: (2021)