Cargando…
Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies
Human mesenchymal stem cells can be isolated from various organs and are in studies on therapeutic cell transplantation. Positive clinical outcomes of transplantations have been attributed to both the secretion of cytokines and growth factors as well as the fusion of donor cells with that of the hos...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421008/ https://www.ncbi.nlm.nih.gov/pubmed/30941369 http://dx.doi.org/10.1155/2019/6376271 |
_version_ | 1783404175977086976 |
---|---|
author | Schmelzer, Eva McKeel, Daniel T. Gerlach, Jörg C. |
author_facet | Schmelzer, Eva McKeel, Daniel T. Gerlach, Jörg C. |
author_sort | Schmelzer, Eva |
collection | PubMed |
description | Human mesenchymal stem cells can be isolated from various organs and are in studies on therapeutic cell transplantation. Positive clinical outcomes of transplantations have been attributed to both the secretion of cytokines and growth factors as well as the fusion of donor cells with that of the host. We compared human mesenchymal stem cells from six different tissues for their transplantation-relevant potential. Furthermore, for prospective allogenic transplantation we developed a semipermeable hollow-fiber membrane enclosure, which would prevent cell fusion, would provide an immune barrier, and would allow for easy removal of donor cells from patients after recovery. We investigated human mesenchymal stem cells from adipose tissue, amniotic tissue, bone marrow, chorionic tissue, liver, and umbilical cord. We compared their multilineage differentiation potential, secretion of growth factors, and the expression of genes and surface markers. We found that although the expression of typical mesenchymal stem cell-associated gene THY1 and surface markers CD90 and CD73 were mostly similar between mesenchymal stem cells from different donor sites, their expression of lineage-specific genes, secretion of growth factors, multilineage differentiation potential, and other surface markers were considerably different. The encasement of mesenchymal stem cells in fibers affected the various mesenchymal stem cells differently depending on their donor site. Conclusively, mesenchymal stem cells isolated from different tissues were not equal, which should be taken into consideration when deciding for optimal sourcing for therapeutic transplantation. The encasement of mesenchymal stem cells into semipermeable membranes could provide a physical immune barrier, preventing cell fusion. |
format | Online Article Text |
id | pubmed-6421008 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-64210082019-04-02 Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies Schmelzer, Eva McKeel, Daniel T. Gerlach, Jörg C. Biomed Res Int Research Article Human mesenchymal stem cells can be isolated from various organs and are in studies on therapeutic cell transplantation. Positive clinical outcomes of transplantations have been attributed to both the secretion of cytokines and growth factors as well as the fusion of donor cells with that of the host. We compared human mesenchymal stem cells from six different tissues for their transplantation-relevant potential. Furthermore, for prospective allogenic transplantation we developed a semipermeable hollow-fiber membrane enclosure, which would prevent cell fusion, would provide an immune barrier, and would allow for easy removal of donor cells from patients after recovery. We investigated human mesenchymal stem cells from adipose tissue, amniotic tissue, bone marrow, chorionic tissue, liver, and umbilical cord. We compared their multilineage differentiation potential, secretion of growth factors, and the expression of genes and surface markers. We found that although the expression of typical mesenchymal stem cell-associated gene THY1 and surface markers CD90 and CD73 were mostly similar between mesenchymal stem cells from different donor sites, their expression of lineage-specific genes, secretion of growth factors, multilineage differentiation potential, and other surface markers were considerably different. The encasement of mesenchymal stem cells in fibers affected the various mesenchymal stem cells differently depending on their donor site. Conclusively, mesenchymal stem cells isolated from different tissues were not equal, which should be taken into consideration when deciding for optimal sourcing for therapeutic transplantation. The encasement of mesenchymal stem cells into semipermeable membranes could provide a physical immune barrier, preventing cell fusion. Hindawi 2019-03-03 /pmc/articles/PMC6421008/ /pubmed/30941369 http://dx.doi.org/10.1155/2019/6376271 Text en Copyright © 2019 Eva Schmelzer et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Schmelzer, Eva McKeel, Daniel T. Gerlach, Jörg C. Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies |
title | Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies |
title_full | Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies |
title_fullStr | Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies |
title_full_unstemmed | Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies |
title_short | Characterization of Human Mesenchymal Stem Cells from Different Tissues and Their Membrane Encasement for Prospective Transplantation Therapies |
title_sort | characterization of human mesenchymal stem cells from different tissues and their membrane encasement for prospective transplantation therapies |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421008/ https://www.ncbi.nlm.nih.gov/pubmed/30941369 http://dx.doi.org/10.1155/2019/6376271 |
work_keys_str_mv | AT schmelzereva characterizationofhumanmesenchymalstemcellsfromdifferenttissuesandtheirmembraneencasementforprospectivetransplantationtherapies AT mckeeldanielt characterizationofhumanmesenchymalstemcellsfromdifferenttissuesandtheirmembraneencasementforprospectivetransplantationtherapies AT gerlachjorgc characterizationofhumanmesenchymalstemcellsfromdifferenttissuesandtheirmembraneencasementforprospectivetransplantationtherapies |