Cargando…

Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection

Adoptive transfer of TCR transgenic T cells holds great promise for treating various cancers. So far, mainly semi-randomly integrating vectors have been used to genetically modify T cells. These carry the risk of insertional mutagenesis, and the sole addition of an exogenous TCR potentially results...

Descripción completa

Detalles Bibliográficos
Autores principales: Albers, Julian J, Ammon, Tim, Gosmann, Dario, Audehm, Stefan, Thoene, Silvia, Winter, Christof, Secci, Ramona, Wolf, Anja, Stelzl, Anja, Steiger, Katja, Ruland, Jürgen, Bassermann, Florian, Kupatt, Christian, Anton, Martina, Krackhardt, Angela M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Life Science Alliance LLC 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421629/
https://www.ncbi.nlm.nih.gov/pubmed/30877233
http://dx.doi.org/10.26508/lsa.201900367
_version_ 1783404260838342656
author Albers, Julian J
Ammon, Tim
Gosmann, Dario
Audehm, Stefan
Thoene, Silvia
Winter, Christof
Secci, Ramona
Wolf, Anja
Stelzl, Anja
Steiger, Katja
Ruland, Jürgen
Bassermann, Florian
Kupatt, Christian
Anton, Martina
Krackhardt, Angela M
author_facet Albers, Julian J
Ammon, Tim
Gosmann, Dario
Audehm, Stefan
Thoene, Silvia
Winter, Christof
Secci, Ramona
Wolf, Anja
Stelzl, Anja
Steiger, Katja
Ruland, Jürgen
Bassermann, Florian
Kupatt, Christian
Anton, Martina
Krackhardt, Angela M
author_sort Albers, Julian J
collection PubMed
description Adoptive transfer of TCR transgenic T cells holds great promise for treating various cancers. So far, mainly semi-randomly integrating vectors have been used to genetically modify T cells. These carry the risk of insertional mutagenesis, and the sole addition of an exogenous TCR potentially results in the mispairing of TCR chains with endogenous ones. Established approaches using nonviral vectors, such as transposons, already reduce the risk of insertional mutagenesis but have not accomplished site-specific integration. Here, we used CRISPR-Cas9 RNPs and adeno-associated virus 6 for gene targeting to deliver an engineered TCR gene specifically to the TCR alpha constant locus, thus placing it under endogenous transcriptional control. Our data demonstrate that this approach replaces the endogenous TCR, functionally redirects the edited T cells’ specificity in vitro, and facilitates potent tumor rejection in an in vivo xenograft model.
format Online
Article
Text
id pubmed-6421629
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Life Science Alliance LLC
record_format MEDLINE/PubMed
spelling pubmed-64216292019-03-19 Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection Albers, Julian J Ammon, Tim Gosmann, Dario Audehm, Stefan Thoene, Silvia Winter, Christof Secci, Ramona Wolf, Anja Stelzl, Anja Steiger, Katja Ruland, Jürgen Bassermann, Florian Kupatt, Christian Anton, Martina Krackhardt, Angela M Life Sci Alliance Resources Adoptive transfer of TCR transgenic T cells holds great promise for treating various cancers. So far, mainly semi-randomly integrating vectors have been used to genetically modify T cells. These carry the risk of insertional mutagenesis, and the sole addition of an exogenous TCR potentially results in the mispairing of TCR chains with endogenous ones. Established approaches using nonviral vectors, such as transposons, already reduce the risk of insertional mutagenesis but have not accomplished site-specific integration. Here, we used CRISPR-Cas9 RNPs and adeno-associated virus 6 for gene targeting to deliver an engineered TCR gene specifically to the TCR alpha constant locus, thus placing it under endogenous transcriptional control. Our data demonstrate that this approach replaces the endogenous TCR, functionally redirects the edited T cells’ specificity in vitro, and facilitates potent tumor rejection in an in vivo xenograft model. Life Science Alliance LLC 2019-03-15 /pmc/articles/PMC6421629/ /pubmed/30877233 http://dx.doi.org/10.26508/lsa.201900367 Text en © 2019 Albers et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
spellingShingle Resources
Albers, Julian J
Ammon, Tim
Gosmann, Dario
Audehm, Stefan
Thoene, Silvia
Winter, Christof
Secci, Ramona
Wolf, Anja
Stelzl, Anja
Steiger, Katja
Ruland, Jürgen
Bassermann, Florian
Kupatt, Christian
Anton, Martina
Krackhardt, Angela M
Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection
title Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection
title_full Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection
title_fullStr Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection
title_full_unstemmed Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection
title_short Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection
title_sort gene editing enables t-cell engineering to redirect antigen specificity for potent tumor rejection
topic Resources
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421629/
https://www.ncbi.nlm.nih.gov/pubmed/30877233
http://dx.doi.org/10.26508/lsa.201900367
work_keys_str_mv AT albersjulianj geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT ammontim geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT gosmanndario geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT audehmstefan geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT thoenesilvia geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT winterchristof geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT secciramona geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT wolfanja geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT stelzlanja geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT steigerkatja geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT rulandjurgen geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT bassermannflorian geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT kupattchristian geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT antonmartina geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection
AT krackhardtangelam geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection