Cargando…
Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection
Adoptive transfer of TCR transgenic T cells holds great promise for treating various cancers. So far, mainly semi-randomly integrating vectors have been used to genetically modify T cells. These carry the risk of insertional mutagenesis, and the sole addition of an exogenous TCR potentially results...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421629/ https://www.ncbi.nlm.nih.gov/pubmed/30877233 http://dx.doi.org/10.26508/lsa.201900367 |
_version_ | 1783404260838342656 |
---|---|
author | Albers, Julian J Ammon, Tim Gosmann, Dario Audehm, Stefan Thoene, Silvia Winter, Christof Secci, Ramona Wolf, Anja Stelzl, Anja Steiger, Katja Ruland, Jürgen Bassermann, Florian Kupatt, Christian Anton, Martina Krackhardt, Angela M |
author_facet | Albers, Julian J Ammon, Tim Gosmann, Dario Audehm, Stefan Thoene, Silvia Winter, Christof Secci, Ramona Wolf, Anja Stelzl, Anja Steiger, Katja Ruland, Jürgen Bassermann, Florian Kupatt, Christian Anton, Martina Krackhardt, Angela M |
author_sort | Albers, Julian J |
collection | PubMed |
description | Adoptive transfer of TCR transgenic T cells holds great promise for treating various cancers. So far, mainly semi-randomly integrating vectors have been used to genetically modify T cells. These carry the risk of insertional mutagenesis, and the sole addition of an exogenous TCR potentially results in the mispairing of TCR chains with endogenous ones. Established approaches using nonviral vectors, such as transposons, already reduce the risk of insertional mutagenesis but have not accomplished site-specific integration. Here, we used CRISPR-Cas9 RNPs and adeno-associated virus 6 for gene targeting to deliver an engineered TCR gene specifically to the TCR alpha constant locus, thus placing it under endogenous transcriptional control. Our data demonstrate that this approach replaces the endogenous TCR, functionally redirects the edited T cells’ specificity in vitro, and facilitates potent tumor rejection in an in vivo xenograft model. |
format | Online Article Text |
id | pubmed-6421629 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Life Science Alliance LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-64216292019-03-19 Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection Albers, Julian J Ammon, Tim Gosmann, Dario Audehm, Stefan Thoene, Silvia Winter, Christof Secci, Ramona Wolf, Anja Stelzl, Anja Steiger, Katja Ruland, Jürgen Bassermann, Florian Kupatt, Christian Anton, Martina Krackhardt, Angela M Life Sci Alliance Resources Adoptive transfer of TCR transgenic T cells holds great promise for treating various cancers. So far, mainly semi-randomly integrating vectors have been used to genetically modify T cells. These carry the risk of insertional mutagenesis, and the sole addition of an exogenous TCR potentially results in the mispairing of TCR chains with endogenous ones. Established approaches using nonviral vectors, such as transposons, already reduce the risk of insertional mutagenesis but have not accomplished site-specific integration. Here, we used CRISPR-Cas9 RNPs and adeno-associated virus 6 for gene targeting to deliver an engineered TCR gene specifically to the TCR alpha constant locus, thus placing it under endogenous transcriptional control. Our data demonstrate that this approach replaces the endogenous TCR, functionally redirects the edited T cells’ specificity in vitro, and facilitates potent tumor rejection in an in vivo xenograft model. Life Science Alliance LLC 2019-03-15 /pmc/articles/PMC6421629/ /pubmed/30877233 http://dx.doi.org/10.26508/lsa.201900367 Text en © 2019 Albers et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Resources Albers, Julian J Ammon, Tim Gosmann, Dario Audehm, Stefan Thoene, Silvia Winter, Christof Secci, Ramona Wolf, Anja Stelzl, Anja Steiger, Katja Ruland, Jürgen Bassermann, Florian Kupatt, Christian Anton, Martina Krackhardt, Angela M Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection |
title | Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection |
title_full | Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection |
title_fullStr | Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection |
title_full_unstemmed | Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection |
title_short | Gene editing enables T-cell engineering to redirect antigen specificity for potent tumor rejection |
title_sort | gene editing enables t-cell engineering to redirect antigen specificity for potent tumor rejection |
topic | Resources |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421629/ https://www.ncbi.nlm.nih.gov/pubmed/30877233 http://dx.doi.org/10.26508/lsa.201900367 |
work_keys_str_mv | AT albersjulianj geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT ammontim geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT gosmanndario geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT audehmstefan geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT thoenesilvia geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT winterchristof geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT secciramona geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT wolfanja geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT stelzlanja geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT steigerkatja geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT rulandjurgen geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT bassermannflorian geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT kupattchristian geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT antonmartina geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection AT krackhardtangelam geneeditingenablestcellengineeringtoredirectantigenspecificityforpotenttumorrejection |