Cargando…

IARNN-Based Semantic-Containing Double-Level Embedding Bi-LSTM for Question-and-Answer Matching

We propose a novel end-to-end approach, namely, the semantic-containing double-level embedding Bi-LSTM model (SCDE-Bi-LSTM), to solve the three key problems of Q&A matching in the Chinese medical field. In the similarity calculation of the Q&A core module, we propose a text similarity calcul...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Chang-zhu, Su, Minglian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421739/
https://www.ncbi.nlm.nih.gov/pubmed/30944556
http://dx.doi.org/10.1155/2019/6074840