Cargando…
IARNN-Based Semantic-Containing Double-Level Embedding Bi-LSTM for Question-and-Answer Matching
We propose a novel end-to-end approach, namely, the semantic-containing double-level embedding Bi-LSTM model (SCDE-Bi-LSTM), to solve the three key problems of Q&A matching in the Chinese medical field. In the similarity calculation of the Q&A core module, we propose a text similarity calcul...
Autores principales: | Xiong, Chang-zhu, Su, Minglian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421739/ https://www.ncbi.nlm.nih.gov/pubmed/30944556 http://dx.doi.org/10.1155/2019/6074840 |
Ejemplares similares
-
A Stacked BiLSTM Neural Network Based on Coattention Mechanism for Question Answering
por: Cai, Linqin, et al.
Publicado: (2019) -
Text Matching in Insurance Question-Answering Community Based on an Integrated BiLSTM-TextCNN Model Fusing Multi-Feature
por: Li, Zhaohui, et al.
Publicado: (2023) -
Using Semantic Text Similarity calculation for question matching in a rheumatoid arthritis question-answering system
por: Li, Meiting, et al.
Publicado: (2023) -
Biomedical question answering using semantic relations
por: Hristovski, Dimitar, et al.
Publicado: (2015) -
Integrating BERT Embeddings and BiLSTM for Emotion Analysis of Dialogue
por: Gou, Zhinan, et al.
Publicado: (2023)