Cargando…

Registration and Analysis of Acceleration Data to Recognize Physical Activity

The purpose of the article is to check whether the acceleration signals recorded by a smartphone help identify a user's physical activity type. The experiments were performed using the application installed in a smartphone, which was located on the hip of a subject. Acceleration signals were re...

Descripción completa

Detalles Bibliográficos
Autores principales: Kołodziej, Marcin, Majkowski, Andrzej, Tarnowski, Paweł, Rak, Remigiusz J., Gebert, Dominik, Sawicki, Dariusz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421813/
https://www.ncbi.nlm.nih.gov/pubmed/30944719
http://dx.doi.org/10.1155/2019/9497151
Descripción
Sumario:The purpose of the article is to check whether the acceleration signals recorded by a smartphone help identify a user's physical activity type. The experiments were performed using the application installed in a smartphone, which was located on the hip of a subject. Acceleration signals were recorded for five types of physical activities (running, standing, going up the stairs, going down the stairs, and walking) for four users. The statistical parameters of the signal were used to extract features from the acceleration signal. In order to classify the type of activity, the quadratic discriminant analysis (QDA) was used. The accuracy of the user-independent classification for five types of activities was 83%. The accuracy of the user-dependent classification was in the range from 90% to 95%. The presented results indicate that the acceleration signal recorded by the device placed on the hip of a user allows us to effectively distinguish among several types of physical activity.