Cargando…
Brain Tissue Segmentation and Bias Field Correction of MR Image Based on Spatially Coherent FCM with Nonlocal Constraints
Influenced by poor radio frequency field uniformity and gradient-driven eddy currents, intensity inhomogeneity (or bias field) and noise appear in brain magnetic resonance (MR) image. However, some traditional fuzzy c-means clustering algorithms with local spatial constraints often cannot obtain sat...
Autores principales: | Song, Jianhua, Zhang, Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421818/ https://www.ncbi.nlm.nih.gov/pubmed/30944578 http://dx.doi.org/10.1155/2019/4762490 |
Ejemplares similares
-
Localized FCM Clustering with Spatial Information for Medical Image Segmentation and Bias Field Estimation
por: Cui, Wenchao, et al.
Publicado: (2013) -
Indistinguishability as nonlocality constraint
por: Amorim, Cássio Sozinho
Publicado: (2018) -
Effects of Spatial Nonlocality versus Nonlocal Causality for Bound Electrons in External Fields
por: Christov, Ivan P.
Publicado: (2022) -
An Improved FCM Medical Image Segmentation Algorithm Based on MMTD
por: Zhou, Ningning, et al.
Publicado: (2014) -
Constraints on nonlocality in networks from no-signaling and independence
por: Gisin, Nicolas, et al.
Publicado: (2020)