Cargando…
Aerobic Degradation of Clothianidin to 2-Chloro-methyl Thiazole and Methyl 3-(Thiazole-yl) Methyl Guanidine Produced by Pseudomonas stutzeri smk
Overuse of pesticides in agriculture may harm environmental and agricultural yields. Sustainable maintenance of soil fertility and management of the environment have become a concern due to the persistence of pesticides in the soil. Microbes have various mechanisms for the bioremediation of persiste...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421824/ https://www.ncbi.nlm.nih.gov/pubmed/30944570 http://dx.doi.org/10.1155/2019/4807913 |
_version_ | 1783404307057475584 |
---|---|
author | Parte, Satish G. Kharat, Arun S. |
author_facet | Parte, Satish G. Kharat, Arun S. |
author_sort | Parte, Satish G. |
collection | PubMed |
description | Overuse of pesticides in agriculture may harm environmental and agricultural yields. Sustainable maintenance of soil fertility and management of the environment have become a concern due to the persistence of pesticides in the soil. Microbes have various mechanisms for the bioremediation of persistent organic pollutants from the environment. A bacterium that degrades clothianidin was isolated from the pesticide and applied to agricultural soil by the enrichment technique. The identity of the bacterium was determined by studying morphological, cultural, and biochemical characteristics and 16S rRNA gene sequences. The ability to metabolize clothianidin was confirmed using UV-visible spectrophotometric, chromatographic, and spectroscopic analyses. A Gram-negative bacterium, designated smk, isolated from clothianidin-contaminated soil was confirmed to be a member of Pseudomonas stutzeri. The biodegradation of clothianidin was studied using P. stutzeri smk. Approximately 62% degradation of clothianidin was achieved within two weeks when grown at 30°C and pH 7. The effects of various physicochemical parameters, including pH, temperature, and clothianidin concentrations, on catabolic rates were studied. The biodegradation studies using UV-Vis spectrophotometry, HPLC, FTIR, and LC-MS indicated the production of the following metabolites: 2-chloro-5-methyl thiazole (CMT), methyl nitroguanidine (MNG), methyl 3-[thiazole-yl], and methyl guanidine (TMG). Identification of specific degradation metabolites indicates that bioremediation of toxic neonicotinoid insecticides may be achieved by application of P. stutzeri smk. |
format | Online Article Text |
id | pubmed-6421824 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-64218242019-04-03 Aerobic Degradation of Clothianidin to 2-Chloro-methyl Thiazole and Methyl 3-(Thiazole-yl) Methyl Guanidine Produced by Pseudomonas stutzeri smk Parte, Satish G. Kharat, Arun S. J Environ Public Health Research Article Overuse of pesticides in agriculture may harm environmental and agricultural yields. Sustainable maintenance of soil fertility and management of the environment have become a concern due to the persistence of pesticides in the soil. Microbes have various mechanisms for the bioremediation of persistent organic pollutants from the environment. A bacterium that degrades clothianidin was isolated from the pesticide and applied to agricultural soil by the enrichment technique. The identity of the bacterium was determined by studying morphological, cultural, and biochemical characteristics and 16S rRNA gene sequences. The ability to metabolize clothianidin was confirmed using UV-visible spectrophotometric, chromatographic, and spectroscopic analyses. A Gram-negative bacterium, designated smk, isolated from clothianidin-contaminated soil was confirmed to be a member of Pseudomonas stutzeri. The biodegradation of clothianidin was studied using P. stutzeri smk. Approximately 62% degradation of clothianidin was achieved within two weeks when grown at 30°C and pH 7. The effects of various physicochemical parameters, including pH, temperature, and clothianidin concentrations, on catabolic rates were studied. The biodegradation studies using UV-Vis spectrophotometry, HPLC, FTIR, and LC-MS indicated the production of the following metabolites: 2-chloro-5-methyl thiazole (CMT), methyl nitroguanidine (MNG), methyl 3-[thiazole-yl], and methyl guanidine (TMG). Identification of specific degradation metabolites indicates that bioremediation of toxic neonicotinoid insecticides may be achieved by application of P. stutzeri smk. Hindawi 2019-03-03 /pmc/articles/PMC6421824/ /pubmed/30944570 http://dx.doi.org/10.1155/2019/4807913 Text en Copyright © 2019 Satish G. Parte and Arun S. Kharat. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Parte, Satish G. Kharat, Arun S. Aerobic Degradation of Clothianidin to 2-Chloro-methyl Thiazole and Methyl 3-(Thiazole-yl) Methyl Guanidine Produced by Pseudomonas stutzeri smk |
title | Aerobic Degradation of Clothianidin to 2-Chloro-methyl Thiazole and Methyl 3-(Thiazole-yl) Methyl Guanidine Produced by Pseudomonas stutzeri smk |
title_full | Aerobic Degradation of Clothianidin to 2-Chloro-methyl Thiazole and Methyl 3-(Thiazole-yl) Methyl Guanidine Produced by Pseudomonas stutzeri smk |
title_fullStr | Aerobic Degradation of Clothianidin to 2-Chloro-methyl Thiazole and Methyl 3-(Thiazole-yl) Methyl Guanidine Produced by Pseudomonas stutzeri smk |
title_full_unstemmed | Aerobic Degradation of Clothianidin to 2-Chloro-methyl Thiazole and Methyl 3-(Thiazole-yl) Methyl Guanidine Produced by Pseudomonas stutzeri smk |
title_short | Aerobic Degradation of Clothianidin to 2-Chloro-methyl Thiazole and Methyl 3-(Thiazole-yl) Methyl Guanidine Produced by Pseudomonas stutzeri smk |
title_sort | aerobic degradation of clothianidin to 2-chloro-methyl thiazole and methyl 3-(thiazole-yl) methyl guanidine produced by pseudomonas stutzeri smk |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421824/ https://www.ncbi.nlm.nih.gov/pubmed/30944570 http://dx.doi.org/10.1155/2019/4807913 |
work_keys_str_mv | AT partesatishg aerobicdegradationofclothianidinto2chloromethylthiazoleandmethyl3thiazoleylmethylguanidineproducedbypseudomonasstutzerismk AT kharataruns aerobicdegradationofclothianidinto2chloromethylthiazoleandmethyl3thiazoleylmethylguanidineproducedbypseudomonasstutzerismk |