Cargando…
Subspecies Typing of Streptococcus agalactiae Based on Ribosomal Subunit Protein Mass Variation by MALDI-TOF MS
Background: A ribosomal subunit protein (rsp)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method was developed for fast subspecies-level typing of Streptococcus agalactiae (Group B Streptococcus, GBS), a major cause of neonatal sepsis and meningi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421976/ https://www.ncbi.nlm.nih.gov/pubmed/30915057 http://dx.doi.org/10.3389/fmicb.2019.00471 |
_version_ | 1783404333823426560 |
---|---|
author | Rothen, Julian Pothier, Joël F. Foucault, Frédéric Blom, Jochen Nanayakkara, Dulmini Li, Carmen Ip, Margaret Tanner, Marcel Vogel, Guido Pflüger, Valentin Daubenberger, Claudia A. |
author_facet | Rothen, Julian Pothier, Joël F. Foucault, Frédéric Blom, Jochen Nanayakkara, Dulmini Li, Carmen Ip, Margaret Tanner, Marcel Vogel, Guido Pflüger, Valentin Daubenberger, Claudia A. |
author_sort | Rothen, Julian |
collection | PubMed |
description | Background: A ribosomal subunit protein (rsp)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method was developed for fast subspecies-level typing of Streptococcus agalactiae (Group B Streptococcus, GBS), a major cause of neonatal sepsis and meningitis. Methods: A total of 796 GBS whole genome sequences, covering the genetic diversity of the global GBS population, were used to in silico predict molecular mass variability of 28 rsp and to identify unique rsp mass combinations, termed “rsp-profiles”. The in silico established GBS typing scheme was validated by MALDI-TOF MS analysis of GBS isolates at two independent research sites in Europe and South East Asia. Results: We identified in silico 62 rsp-profiles, with the majority (>80%) of the 796 GBS isolates displaying one of the six rsp-profiles 1–6. These dominant rsp-profiles classify GBS strains in high concordance with the core-genome based phylogenetic clustering. Validation of our approach by in-house MALDI-TOF MS analysis of 248 GBS isolates and external analysis of 8 GBS isolates showed that across different laboratories and MALDI-TOF MS platforms, the 28 rsp were detected reliably in the mass spectra, allowing assignment of clinical isolates to rsp-profiles at high sensitivity (99%) and specificity (97%). Our approach distinguishes the major phylogenetic GBS genotypes, identifies hyper-virulent strains, predicts the probable capsular serotype and surface protein variants and distinguishes between GBS genotypes of human and animal origin. Conclusion: We combine the information depth of whole genome sequences with the highly cost efficient, rapid and robust MALDI-TOF MS approach facilitating high-throughput, inter-laboratory, large-scale GBS epidemiological and clinical studies based on pre-defined rsp-profiles. |
format | Online Article Text |
id | pubmed-6421976 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64219762019-03-26 Subspecies Typing of Streptococcus agalactiae Based on Ribosomal Subunit Protein Mass Variation by MALDI-TOF MS Rothen, Julian Pothier, Joël F. Foucault, Frédéric Blom, Jochen Nanayakkara, Dulmini Li, Carmen Ip, Margaret Tanner, Marcel Vogel, Guido Pflüger, Valentin Daubenberger, Claudia A. Front Microbiol Microbiology Background: A ribosomal subunit protein (rsp)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method was developed for fast subspecies-level typing of Streptococcus agalactiae (Group B Streptococcus, GBS), a major cause of neonatal sepsis and meningitis. Methods: A total of 796 GBS whole genome sequences, covering the genetic diversity of the global GBS population, were used to in silico predict molecular mass variability of 28 rsp and to identify unique rsp mass combinations, termed “rsp-profiles”. The in silico established GBS typing scheme was validated by MALDI-TOF MS analysis of GBS isolates at two independent research sites in Europe and South East Asia. Results: We identified in silico 62 rsp-profiles, with the majority (>80%) of the 796 GBS isolates displaying one of the six rsp-profiles 1–6. These dominant rsp-profiles classify GBS strains in high concordance with the core-genome based phylogenetic clustering. Validation of our approach by in-house MALDI-TOF MS analysis of 248 GBS isolates and external analysis of 8 GBS isolates showed that across different laboratories and MALDI-TOF MS platforms, the 28 rsp were detected reliably in the mass spectra, allowing assignment of clinical isolates to rsp-profiles at high sensitivity (99%) and specificity (97%). Our approach distinguishes the major phylogenetic GBS genotypes, identifies hyper-virulent strains, predicts the probable capsular serotype and surface protein variants and distinguishes between GBS genotypes of human and animal origin. Conclusion: We combine the information depth of whole genome sequences with the highly cost efficient, rapid and robust MALDI-TOF MS approach facilitating high-throughput, inter-laboratory, large-scale GBS epidemiological and clinical studies based on pre-defined rsp-profiles. Frontiers Media S.A. 2019-03-11 /pmc/articles/PMC6421976/ /pubmed/30915057 http://dx.doi.org/10.3389/fmicb.2019.00471 Text en Copyright © 2019 Rothen, Pothier, Foucault, Blom, Nanayakkara, Li, Ip, Tanner, Vogel, Pflüger and Daubenberger. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Rothen, Julian Pothier, Joël F. Foucault, Frédéric Blom, Jochen Nanayakkara, Dulmini Li, Carmen Ip, Margaret Tanner, Marcel Vogel, Guido Pflüger, Valentin Daubenberger, Claudia A. Subspecies Typing of Streptococcus agalactiae Based on Ribosomal Subunit Protein Mass Variation by MALDI-TOF MS |
title | Subspecies Typing of Streptococcus agalactiae Based on Ribosomal Subunit Protein Mass Variation by MALDI-TOF MS |
title_full | Subspecies Typing of Streptococcus agalactiae Based on Ribosomal Subunit Protein Mass Variation by MALDI-TOF MS |
title_fullStr | Subspecies Typing of Streptococcus agalactiae Based on Ribosomal Subunit Protein Mass Variation by MALDI-TOF MS |
title_full_unstemmed | Subspecies Typing of Streptococcus agalactiae Based on Ribosomal Subunit Protein Mass Variation by MALDI-TOF MS |
title_short | Subspecies Typing of Streptococcus agalactiae Based on Ribosomal Subunit Protein Mass Variation by MALDI-TOF MS |
title_sort | subspecies typing of streptococcus agalactiae based on ribosomal subunit protein mass variation by maldi-tof ms |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421976/ https://www.ncbi.nlm.nih.gov/pubmed/30915057 http://dx.doi.org/10.3389/fmicb.2019.00471 |
work_keys_str_mv | AT rothenjulian subspeciestypingofstreptococcusagalactiaebasedonribosomalsubunitproteinmassvariationbymalditofms AT pothierjoelf subspeciestypingofstreptococcusagalactiaebasedonribosomalsubunitproteinmassvariationbymalditofms AT foucaultfrederic subspeciestypingofstreptococcusagalactiaebasedonribosomalsubunitproteinmassvariationbymalditofms AT blomjochen subspeciestypingofstreptococcusagalactiaebasedonribosomalsubunitproteinmassvariationbymalditofms AT nanayakkaradulmini subspeciestypingofstreptococcusagalactiaebasedonribosomalsubunitproteinmassvariationbymalditofms AT licarmen subspeciestypingofstreptococcusagalactiaebasedonribosomalsubunitproteinmassvariationbymalditofms AT ipmargaret subspeciestypingofstreptococcusagalactiaebasedonribosomalsubunitproteinmassvariationbymalditofms AT tannermarcel subspeciestypingofstreptococcusagalactiaebasedonribosomalsubunitproteinmassvariationbymalditofms AT vogelguido subspeciestypingofstreptococcusagalactiaebasedonribosomalsubunitproteinmassvariationbymalditofms AT pflugervalentin subspeciestypingofstreptococcusagalactiaebasedonribosomalsubunitproteinmassvariationbymalditofms AT daubenbergerclaudiaa subspeciestypingofstreptococcusagalactiaebasedonribosomalsubunitproteinmassvariationbymalditofms |