Cargando…

Discovery of lipid biomarkers correlated with disease progression in clear cell renal cell carcinoma using desorption electrospray ionization imaging mass spectrometry

Clear cell renal cell carcinoma (ccRCC) often results in recurrence or metastasis, and there are only a few clinically effective biomarkers for early diagnosis and personalized therapy. Metabolic changes have been widely studied using mass spectrometry (MS) of tissue lysates to identify novel biomar...

Descripción completa

Detalles Bibliográficos
Autores principales: Tamura, Keita, Horikawa, Makoto, Sato, Shumpei, Miyake, Hideaki, Setou, Mitsutoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6422196/
https://www.ncbi.nlm.nih.gov/pubmed/30899441
http://dx.doi.org/10.18632/oncotarget.26706
Descripción
Sumario:Clear cell renal cell carcinoma (ccRCC) often results in recurrence or metastasis, and there are only a few clinically effective biomarkers for early diagnosis and personalized therapy. Metabolic changes have been widely studied using mass spectrometry (MS) of tissue lysates to identify novel biomarkers. Our objective was to identify lipid biomarkers that can predict disease progression in ccRCC by a tissue-based approach. We retrospectively investigated lipid molecules in cancerous tissues and normal renal cortex tissues obtained from patients with ccRCC (n = 47) using desorption electrospray ionization imaging mass spectrometry (DESI-IMS). We selected eight candidate lipid biomarkers showing higher signal intensity in cancerous than in normal tissues, with a clear distinction of the tissue type based on the images. Of these candidates, low maximum intensity ratio (cancerous/normal) values of ions of oleic acid, m/z 389.2, and 391.3 significantly correlated with shorter progression-free survival compared with high maximum intensity ratio values (P = 0.011, P = 0.022, and P < 0.001, respectively). This study identified novel lipid molecules contributing to the prediction of disease progression in ccRCC using DESI-IMS. Our findings on lipid storage may provide a new diagnostic or therapeutic strategy for targeting cancer cell metabolism.