Cargando…
Predicting drug-induced liver injury: The importance of data curation
Drug-induced liver injury (DILI) is a major issue for both patients and pharmaceutical industry due to insufficient means of prevention/prediction. In the current work we present a 2-class classification model for DILI, generated with Random Forest and 2D molecular descriptors on a dataset of 966 co...
Autores principales: | Kotsampasakou, Eleni, Montanari, Floriane, Ecker, Gerhard F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6422282/ https://www.ncbi.nlm.nih.gov/pubmed/28652195 http://dx.doi.org/10.1016/j.tox.2017.06.003 |
Ejemplares similares
-
Curated human hyperbilirubinemia data and the respective OATP1B1 and 1B3 inhibition predictions
por: Kotsampasakou, Eleni, et al.
Publicado: (2017) -
Predicting Drug-Induced Cholestasis with the Help
of Hepatic Transporters—An in Silico Modeling
Approach
por: Kotsampasakou, Eleni, et al.
Publicado: (2017) -
Comparing the performance of meta-classifiers—a case study on selected imbalanced data sets relevant for prediction of liver toxicity
por: Jain, Sankalp, et al.
Publicado: (2018) -
Prediction of drug–ABC-transporter interaction — Recent advances and future challenges☆
por: Montanari, Floriane, et al.
Publicado: (2015) -
Identification of Novel Inhibitors of Organic Anion
Transporting Polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3) Using
a Consensus Vote of Six Classification Models
por: Kotsampasakou, Eleni, et al.
Publicado: (2015)