Cargando…
Stability of radiomics features in apparent diffusion coefficient maps from a multi-centre test-retest trial
Quantitative radiomics features, extracted from medical images, characterize tumour-phenotypes and have been shown to provide prognostic value in predicting clinical outcomes. Stability of radiomics features extracted from apparent diffusion coefficient (ADC)-maps is essential for reliable correlati...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423042/ https://www.ncbi.nlm.nih.gov/pubmed/30886309 http://dx.doi.org/10.1038/s41598-019-41344-5 |
Sumario: | Quantitative radiomics features, extracted from medical images, characterize tumour-phenotypes and have been shown to provide prognostic value in predicting clinical outcomes. Stability of radiomics features extracted from apparent diffusion coefficient (ADC)-maps is essential for reliable correlation with the underlying pathology and its clinical applications. Within a multicentre, multi-vendor trial we established a method to analyse radiomics features from ADC-maps of ovarian (n = 12), lung (n = 19), and colorectal liver metastasis (n = 30) cancer patients who underwent repeated (<7 days) diffusion-weighted imaging at 1.5 T and 3 T. From these ADC-maps, 1322 features describing tumour shape, texture and intensity were retrospectively extracted and stable features were selected using the concordance correlation coefficient (CCC > 0.85). Although some features were tissue- and/or respiratory motion-specific, 122 features were stable for all tumour-entities. A large proportion of features were stable across different vendors and field strengths. By extracting stable phenotypic features, fitting-dimensionality is reduced and reliable prognostic models can be created, paving the way for clinical implementation of ADC-based radiomics. |
---|