Cargando…
Automatic Analysis of EEGs Using Big Data and Hybrid Deep Learning Architectures
Brain monitoring combined with automatic analysis of EEGs provides a clinical decision support tool that can reduce time to diagnosis and assist clinicians in real-time monitoring applications (e.g., neurological intensive care units). Clinicians have indicated that a sensitivity of 95% with specifi...
Autores principales: | Golmohammadi, Meysam, Harati Nejad Torbati, Amir Hossein, Lopez de Diego, Silvia, Obeid, Iyad, Picone, Joseph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423064/ https://www.ncbi.nlm.nih.gov/pubmed/30914936 http://dx.doi.org/10.3389/fnhum.2019.00076 |
Ejemplares similares
-
The Temple University Hospital EEG Data Corpus
por: Obeid, Iyad, et al.
Publicado: (2016) -
The Temple University Hospital Seizure Detection Corpus
por: Shah, Vinit, et al.
Publicado: (2018) -
Automatic Seizure Classification Based on Domain-Invariant Deep Representation of EEG
por: Cao, Xincheng, et al.
Publicado: (2021) -
Deep convolutional architecture‐based hybrid learning for sleep arousal events detection through single‐lead EEG signals
por: Foroughi, Andia, et al.
Publicado: (2023) -
Optimization of Deep Architectures for EEG Signal Classification: An AutoML Approach Using Evolutionary Algorithms
por: Aquino-Brítez, Diego, et al.
Publicado: (2021)