Cargando…
Novel Data Transformations for RNA-seq Differential Expression Analysis
We propose eight data transformations (r, r2, rv, rv2, l, l2, lv, and lv2) for RNA-seq data analysis aiming to make the transformed sample mean to be representative of the distribution center since it is not always possible to transform count data to satisfy the normality assumption. Simulation stud...
Autores principales: | Zhang, Zeyu, Yu, Danyang, Seo, Minseok, Hersh, Craig P., Weiss, Scott T., Qiu, Weiliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423143/ https://www.ncbi.nlm.nih.gov/pubmed/30886278 http://dx.doi.org/10.1038/s41598-019-41315-w |
Ejemplares similares
-
BALLI: Bartlett-adjusted likelihood-based linear model approach for identifying differentially expressed genes with RNA-seq data
por: Park, Kyungtaek, et al.
Publicado: (2019) -
New Statistical Methods for Constructing Robust Differential Correlation Networks to characterize the interactions among microRNAs
por: Yu, Danyang, et al.
Publicado: (2019) -
Differential Expression Analysis for RNA-Seq Data
por: Gupta, Rashi, et al.
Publicado: (2012) -
On Differential Gene Expression Using RNA-Seq Data
por: Lee, Juhee, et al.
Publicado: (2011) -
Differential expression analysis for paired RNA-seq data
por: Chung, Lisa M, et al.
Publicado: (2013)