Cargando…

CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management

BACKGROUND: High-quality plant phenotyping and climate data lay the foundation for phenotypic analysis and genotype-environment interaction, providing important evidence not only for plant scientists to understand the dynamics between crop performance, genotypes, and environmental factors but also f...

Descripción completa

Detalles Bibliográficos
Autores principales: Reynolds, Daniel, Ball, Joshua, Bauer, Alan, Davey, Robert, Griffiths, Simon, Zhou, Ji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423370/
https://www.ncbi.nlm.nih.gov/pubmed/30715329
http://dx.doi.org/10.1093/gigascience/giz009
_version_ 1783404521790111744
author Reynolds, Daniel
Ball, Joshua
Bauer, Alan
Davey, Robert
Griffiths, Simon
Zhou, Ji
author_facet Reynolds, Daniel
Ball, Joshua
Bauer, Alan
Davey, Robert
Griffiths, Simon
Zhou, Ji
author_sort Reynolds, Daniel
collection PubMed
description BACKGROUND: High-quality plant phenotyping and climate data lay the foundation for phenotypic analysis and genotype-environment interaction, providing important evidence not only for plant scientists to understand the dynamics between crop performance, genotypes, and environmental factors but also for agronomists and farmers to closely monitor crops in fluctuating agricultural conditions. With the rise of Internet of Things technologies (IoT) in recent years, many IoT-based remote sensing devices have been applied to plant phenotyping and crop monitoring, which are generating terabytes of biological datasets every day. However, it is still technically challenging to calibrate, annotate, and aggregate the big data effectively, especially when they were produced in multiple locations and at different scales. FINDINGS: CropSight is a PHP Hypertext Pre-processor and structured query language-based server platform that provides automated data collation, storage, and information management through distributed IoT sensors and phenotyping workstations. It provides a two-component solution to monitor biological experiments through networked sensing devices, with interfaces specifically designed for distributed plant phenotyping and centralized data management. Data transfer and annotation are accomplished automatically through an hypertext transfer protocol-accessible RESTful API installed on both device side and server side of the CropSight system, which synchronize daily representative crop growth images for visual-based crop assessment and hourly microclimate readings for GxE studies. CropSight also supports the comparison of historical and ongoing crop performance while different experiments are being conducted. CONCLUSIONS: As a scalable and open-source information management system, CropSight can be used to maintain and collate important crop performance and microclimate datasets captured by IoT sensors and distributed phenotyping installations. It provides near real-time environmental and crop growth monitoring in addition to historical and current experiment comparison through an integrated cloud-ready server system. Accessible both locally in the field through smart devices and remotely in an office using a personal computer, CropSight has been applied to field experiments of bread wheat prebreeding since 2016 and speed breeding since 2017. We believe that the CropSight system could have a significant impact on scalable plant phenotyping and IoT-style crop management to enable smart agricultural practices in the near future.
format Online
Article
Text
id pubmed-6423370
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-64233702019-03-22 CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management Reynolds, Daniel Ball, Joshua Bauer, Alan Davey, Robert Griffiths, Simon Zhou, Ji Gigascience Technical Note BACKGROUND: High-quality plant phenotyping and climate data lay the foundation for phenotypic analysis and genotype-environment interaction, providing important evidence not only for plant scientists to understand the dynamics between crop performance, genotypes, and environmental factors but also for agronomists and farmers to closely monitor crops in fluctuating agricultural conditions. With the rise of Internet of Things technologies (IoT) in recent years, many IoT-based remote sensing devices have been applied to plant phenotyping and crop monitoring, which are generating terabytes of biological datasets every day. However, it is still technically challenging to calibrate, annotate, and aggregate the big data effectively, especially when they were produced in multiple locations and at different scales. FINDINGS: CropSight is a PHP Hypertext Pre-processor and structured query language-based server platform that provides automated data collation, storage, and information management through distributed IoT sensors and phenotyping workstations. It provides a two-component solution to monitor biological experiments through networked sensing devices, with interfaces specifically designed for distributed plant phenotyping and centralized data management. Data transfer and annotation are accomplished automatically through an hypertext transfer protocol-accessible RESTful API installed on both device side and server side of the CropSight system, which synchronize daily representative crop growth images for visual-based crop assessment and hourly microclimate readings for GxE studies. CropSight also supports the comparison of historical and ongoing crop performance while different experiments are being conducted. CONCLUSIONS: As a scalable and open-source information management system, CropSight can be used to maintain and collate important crop performance and microclimate datasets captured by IoT sensors and distributed phenotyping installations. It provides near real-time environmental and crop growth monitoring in addition to historical and current experiment comparison through an integrated cloud-ready server system. Accessible both locally in the field through smart devices and remotely in an office using a personal computer, CropSight has been applied to field experiments of bread wheat prebreeding since 2016 and speed breeding since 2017. We believe that the CropSight system could have a significant impact on scalable plant phenotyping and IoT-style crop management to enable smart agricultural practices in the near future. Oxford University Press 2019-01-31 /pmc/articles/PMC6423370/ /pubmed/30715329 http://dx.doi.org/10.1093/gigascience/giz009 Text en © The Author(s) 2019. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Technical Note
Reynolds, Daniel
Ball, Joshua
Bauer, Alan
Davey, Robert
Griffiths, Simon
Zhou, Ji
CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management
title CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management
title_full CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management
title_fullStr CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management
title_full_unstemmed CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management
title_short CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management
title_sort cropsight: a scalable and open-source information management system for distributed plant phenotyping and iot-based crop management
topic Technical Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423370/
https://www.ncbi.nlm.nih.gov/pubmed/30715329
http://dx.doi.org/10.1093/gigascience/giz009
work_keys_str_mv AT reynoldsdaniel cropsightascalableandopensourceinformationmanagementsystemfordistributedplantphenotypingandiotbasedcropmanagement
AT balljoshua cropsightascalableandopensourceinformationmanagementsystemfordistributedplantphenotypingandiotbasedcropmanagement
AT baueralan cropsightascalableandopensourceinformationmanagementsystemfordistributedplantphenotypingandiotbasedcropmanagement
AT daveyrobert cropsightascalableandopensourceinformationmanagementsystemfordistributedplantphenotypingandiotbasedcropmanagement
AT griffithssimon cropsightascalableandopensourceinformationmanagementsystemfordistributedplantphenotypingandiotbasedcropmanagement
AT zhouji cropsightascalableandopensourceinformationmanagementsystemfordistributedplantphenotypingandiotbasedcropmanagement