Cargando…

Duloxetine by Modulating the Akt/GSK3 Signaling Pathways Has Neuroprotective Effects against Methamphetamine-Induced Neurodegeneration and Cognition Impairment in Rats

BACKGROUND: The neuroprotective effects of duloxetine, as an antidepressant agent, and the neurodegenerative effects of methamphetamine have been shown in previous studies. Nonetheless, their exact neurochemical and behavioral effects are still unclear. In the current study, we sought to clarify the...

Descripción completa

Detalles Bibliográficos
Autores principales: Rahimi Borumand, Mehrasa, Motaghinejad, Majid, Motevalian, Manijeh, Gholami, Mina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Iranian Journal of Medical Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423432/
https://www.ncbi.nlm.nih.gov/pubmed/30936601
_version_ 1783404528148676608
author Rahimi Borumand, Mehrasa
Motaghinejad, Majid
Motevalian, Manijeh
Gholami, Mina
author_facet Rahimi Borumand, Mehrasa
Motaghinejad, Majid
Motevalian, Manijeh
Gholami, Mina
author_sort Rahimi Borumand, Mehrasa
collection PubMed
description BACKGROUND: The neuroprotective effects of duloxetine, as an antidepressant agent, and the neurodegenerative effects of methamphetamine have been shown in previous studies. Nonetheless, their exact neurochemical and behavioral effects are still unclear. In the current study, we sought to clarify the molecular mechanisms involved in the protective effects of duloxetine against methamphetamine-induced neurodegeneration. METHODS: Forty adult male rats were divided randomly into 5 groups. Group 1 was the negative control and received normal saline, Group 2 was the positive control and received methamphetamine, and Groups 3, 4, and 5 were concurrently treated with methamphetamine (10 mg/kg) and duloxetine (5, 10, and 15 mg/kg, respectively). All the treatments were continued for 21 days. Between days 17 and 21, the Morris Water Maze (MWM) was used to assess learning and memory in the treated groups. On day 22, the hippocampus was isolated from each rat and oxidative, antioxidant, and inflammatory factors were measured. Additionally, the expression levels of the total and phosphorylated forms of the Akt and GSK3 proteins were evaluated via the ELISA method. RESULTS: Duloxetine in all the administered doses ameliorated the effects of the methamphetamine-induced cognition impairment in the MWM. The chronic abuse of methamphetamine increased malondialdehyde, tumor necrosis factor-α, and interleukin-1β, while it decreased superoxide dismutase, glutathione peroxidase, and glutathione reductase activities. Duloxetine not only prevented these malicious effects of methamphetamine but also activated the expression of Akt (both forms) and inhibited the expression of GSK3 (both forms) in the methamphetamine-treated rats. CONCLUSION: We conclude that the Akt/GSK3 signaling pathways might have a critical role in the protective effects of duloxetine against methamphetamine-induced neurodegeneration and cognition impairment.
format Online
Article
Text
id pubmed-6423432
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Iranian Journal of Medical Sciences
record_format MEDLINE/PubMed
spelling pubmed-64234322019-04-01 Duloxetine by Modulating the Akt/GSK3 Signaling Pathways Has Neuroprotective Effects against Methamphetamine-Induced Neurodegeneration and Cognition Impairment in Rats Rahimi Borumand, Mehrasa Motaghinejad, Majid Motevalian, Manijeh Gholami, Mina Iran J Med Sci Original Article BACKGROUND: The neuroprotective effects of duloxetine, as an antidepressant agent, and the neurodegenerative effects of methamphetamine have been shown in previous studies. Nonetheless, their exact neurochemical and behavioral effects are still unclear. In the current study, we sought to clarify the molecular mechanisms involved in the protective effects of duloxetine against methamphetamine-induced neurodegeneration. METHODS: Forty adult male rats were divided randomly into 5 groups. Group 1 was the negative control and received normal saline, Group 2 was the positive control and received methamphetamine, and Groups 3, 4, and 5 were concurrently treated with methamphetamine (10 mg/kg) and duloxetine (5, 10, and 15 mg/kg, respectively). All the treatments were continued for 21 days. Between days 17 and 21, the Morris Water Maze (MWM) was used to assess learning and memory in the treated groups. On day 22, the hippocampus was isolated from each rat and oxidative, antioxidant, and inflammatory factors were measured. Additionally, the expression levels of the total and phosphorylated forms of the Akt and GSK3 proteins were evaluated via the ELISA method. RESULTS: Duloxetine in all the administered doses ameliorated the effects of the methamphetamine-induced cognition impairment in the MWM. The chronic abuse of methamphetamine increased malondialdehyde, tumor necrosis factor-α, and interleukin-1β, while it decreased superoxide dismutase, glutathione peroxidase, and glutathione reductase activities. Duloxetine not only prevented these malicious effects of methamphetamine but also activated the expression of Akt (both forms) and inhibited the expression of GSK3 (both forms) in the methamphetamine-treated rats. CONCLUSION: We conclude that the Akt/GSK3 signaling pathways might have a critical role in the protective effects of duloxetine against methamphetamine-induced neurodegeneration and cognition impairment. Iranian Journal of Medical Sciences 2019-03 /pmc/articles/PMC6423432/ /pubmed/30936601 Text en Copyright: © Iranian Journal of Medical Sciences http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Rahimi Borumand, Mehrasa
Motaghinejad, Majid
Motevalian, Manijeh
Gholami, Mina
Duloxetine by Modulating the Akt/GSK3 Signaling Pathways Has Neuroprotective Effects against Methamphetamine-Induced Neurodegeneration and Cognition Impairment in Rats
title Duloxetine by Modulating the Akt/GSK3 Signaling Pathways Has Neuroprotective Effects against Methamphetamine-Induced Neurodegeneration and Cognition Impairment in Rats
title_full Duloxetine by Modulating the Akt/GSK3 Signaling Pathways Has Neuroprotective Effects against Methamphetamine-Induced Neurodegeneration and Cognition Impairment in Rats
title_fullStr Duloxetine by Modulating the Akt/GSK3 Signaling Pathways Has Neuroprotective Effects against Methamphetamine-Induced Neurodegeneration and Cognition Impairment in Rats
title_full_unstemmed Duloxetine by Modulating the Akt/GSK3 Signaling Pathways Has Neuroprotective Effects against Methamphetamine-Induced Neurodegeneration and Cognition Impairment in Rats
title_short Duloxetine by Modulating the Akt/GSK3 Signaling Pathways Has Neuroprotective Effects against Methamphetamine-Induced Neurodegeneration and Cognition Impairment in Rats
title_sort duloxetine by modulating the akt/gsk3 signaling pathways has neuroprotective effects against methamphetamine-induced neurodegeneration and cognition impairment in rats
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6423432/
https://www.ncbi.nlm.nih.gov/pubmed/30936601
work_keys_str_mv AT rahimiborumandmehrasa duloxetinebymodulatingtheaktgsk3signalingpathwayshasneuroprotectiveeffectsagainstmethamphetamineinducedneurodegenerationandcognitionimpairmentinrats
AT motaghinejadmajid duloxetinebymodulatingtheaktgsk3signalingpathwayshasneuroprotectiveeffectsagainstmethamphetamineinducedneurodegenerationandcognitionimpairmentinrats
AT motevalianmanijeh duloxetinebymodulatingtheaktgsk3signalingpathwayshasneuroprotectiveeffectsagainstmethamphetamineinducedneurodegenerationandcognitionimpairmentinrats
AT gholamimina duloxetinebymodulatingtheaktgsk3signalingpathwayshasneuroprotectiveeffectsagainstmethamphetamineinducedneurodegenerationandcognitionimpairmentinrats